Parameter co-evolution mechanism of particle swarm optimisation algorithm

被引:0
作者
Zhao M. [1 ]
Song X. [1 ]
Gao Y. [2 ]
机构
[1] Information and Control Engineering Faculty, Shenyang Jianzhu University, Shenyang, Liaoning Province
[2] Information Technology Department, Shenyang Gas Co. Ltd., Shenyang, Liaoning Province
关键词
Acceleration factor; Adjustment mechanism; Benchmark functions; Inertia weight; Numerical optimisation; Parameter co-evolution; Particle swarm optimisation; Population evolution; PSO; Stochastic evolution speed;
D O I
10.1504/IJSPM.2020.107327
中图分类号
学科分类号
摘要
The running parameters are the important factors that influence the performance of PSO, and the optimisation of the selection and the adjustment strategy on them is one of the hot research directions. Based on the related research, this paper designs a co-evolution mechanism for the parameters of PSO including both the inertia weight and the acceleration factors, which defines stochastic evolution speed to reflect the current state of population evolution during the iterative process, and uses it as the feedback to set the inertia weight and the two acceleration factors. PSO with the parameter co-evolution mechanism can realise cooperative evolution of the running parameters with the population by dynamically adjusting parameter values according to population evolution state. Compared with five widely recognised parameter selection or adjustment strategies, on 20 numerical optimisation benchmark functions of different categories, the effectiveness and the efficiency of the proposed mechanism are verified. © 2020 Inderscience Enterprises Ltd.
引用
收藏
页码:255 / 267
页数:12
相关论文
共 50 条
  • [31] USING PARTICLE SWARM OPTIMIZATION ALGORITHM FOR PARAMETER ESTIMATION IN HYDROLOGICAL MODELLING
    Jakubcova, Michala
    [J]. INFORMATICS, GEOINFORMATICS AND REMOTE SENSING, VOL I (SGEM 2015), 2015, : 399 - 406
  • [32] Parameter Selection in Particle Swarm Optimisation from Stochastic Stability Analysis
    Erskine, Adam
    Joyce, Thomas
    Herrmann, J. Michael
    [J]. SWARM INTELLIGENCE, 2016, 9882 : 161 - 172
  • [33] Particle Swarm Optimization Algorithm Based on Two Swarm Evolution
    Wang Li
    Zhang Jianfeng
    Li Xin
    Sun Guoqiang
    [J]. 2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 1200 - 1204
  • [34] An improved multi-objective particle swarm optimisation algorithm
    Fu, Tiaoping
    Shang Ya-Ling
    [J]. INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2011, 12 (1-2) : 66 - 71
  • [35] A hierarchical particle swarm optimisation algorithm for cloud computing environment
    Ti, Yen-Wu
    Chen, Shang-Kuan
    Wang, Wen-Cheng
    [J]. INTERNATIONAL JOURNAL OF INFORMATION AND COMPUTER SECURITY, 2022, 18 (1-2) : 12 - 26
  • [36] A hybrid cooperative cuckoo search algorithm with particle swarm optimisation
    Wang, Lijin
    Zhong, Yiwen
    Yin, Yilong
    [J]. INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2015, 6 (01) : 18 - 29
  • [37] On the effect of particle update modes in particle swarm optimisation
    Dong, Nanjiang
    Wang, Rui
    Zhang, Tao
    Ou, Junwei
    [J]. INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2023, 21 (04) : 230 - 239
  • [38] An adaptive parameter tuning of particle swarm optimization algorithm
    Xu, Gang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4560 - 4569
  • [39] Enhanced leader particle swarm optimisation (ELPSO): An efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules
    Jordehi, A. Rezaee
    [J]. SOLAR ENERGY, 2018, 159 : 78 - 87
  • [40] Mine car suspension parameter optimisation based on improved particle swarm optimisation and approximation model
    Zhang, Jun
    Li, Xin
    Liu, Duyou
    [J]. INTERNATIONAL JOURNAL OF VEHICLE DESIGN, 2019, 80 (01) : 23 - 40