Magnetocaloric and structural studies of substituted Tb0.2Dy0.8-xGdxCo0.9Al0.1 laves phases alloys

被引:4
作者
Politova G. [1 ,2 ]
Kaminskaya T. [3 ]
Mikhailova A. [1 ]
Ganin M. [1 ]
Alekseeva O. [2 ]
Vanina P. [2 ]
Nacke B. [4 ]
Filimonov A. [2 ]
Rudskoy A. [2 ]
Burkhanov G. [1 ]
机构
[1] Baikov Institute of Metallurgy and Materials Science RAS, Moscow
[2] Peter the Great St. Petersburg Polytechnic University, St. Petersburg
[3] Lomonosov Moscow State University, Faculty of Physics, Moscow
[4] Leibniz University Hannover, Institute of Electrotechnology, Hannover
基金
俄罗斯基础研究基金会;
关键词
Atomic force microscopy; Laves phase; Magnetocaloric effect; Rare-earth intermetallic compounds; Structural distortion;
D O I
10.4028/www.scientific.net/KEM.806.136
中图分类号
学科分类号
摘要
The multicomponent Tb0.2Dy0.8-xGdxCo2 and Tb0.2Dy0.8-xGdxCo0.9Al0.1 alloys (x≤0.5) were studied in a large temperature range (80 – 350 K) and fields up to 1.8 T. Temperature dependencies of lattices parameters, surface topology features, Curie temperature and magnetocaloric effect near it, of these polycrystalline cubic Laves phase alloys have been obtained and analyzed. The effect of Gd and Al substitution within the rare earth and cobalt sublattices on the structural and magnetocaloric properties of Tb0.2Dy0.8Co2 has been discussed. © 2019 Trans Tech Publications, Switzerland.
引用
收藏
页码:136 / 141
页数:5
相关论文
共 19 条
  • [1] Clark A.E., Ferromagnetic Materials, 1, (1980)
  • [2] Inoue J., Shimizu M., First- And second-order magnetic phase transitions in (RY)Co2 and R(CoAl)2 (R=heavy rare-earth element) compounds, J. Phys. F Met. Phys., 18, pp. 2487-2498, (1988)
  • [3] Del Moral A., Melville D., Magnetostriction of some cubic rare earth-Co2 compounds in high magnetic fields, J. Phys. F: Metal Phys., 5, pp. 1767-1777, (1975)
  • [4] Andreev A.V., Thermal expansion anomalies and spontaneous magnetostriction in rare-earth intermetallics with cobalt and iron, Handbook of Magnetic Materials, 8, 2, pp. 59-187, (1995)
  • [5] Nie Z., Yang S., Wang Y., Wang Z., Liu D., Ren Y., Low-field large magnetostriction in DyCo2 due to field-induced rearrangement of tetragonal variants, Appl. Phys. Lett., 103, (2013)
  • [6] Yang S., Bao H., Zhou C., Wang Y., Ren X., Matsushita Y., Katsuya Y., Tanaka M., Kobayashi K., Song X., Gao J., Large magnetostriction from morphotropic phase boundary in ferromagnets, Phys. Rev. Lett., 104, (2010)
  • [7] Zhou C., Ren S., Bao H., Yang S., Yao Y., Ji Y., Ren X., Matsushita Y., Katsuya Y., Tanaka M., Kobayashi K., Inverse effect of morphotropic phase boundary on the magnetostriction of ferromagnetic Tb1−xGdxCo2, Phys. Rev. B, 89, (2014)
  • [8] Politova G.A., Chzhan V.B., Tereshina I.S., Burkhanov G.S., Manakov A.A., Alekseeva O.A., Filimonov A.V., Ilyushin A.S., Spontaneous and external magnetic field induced magnetostriction in RCo2-based multicomponent alloys, Phys. Solid State, 57, 12, pp. 2417-2422, (2015)
  • [9] Chzhan V.B., Tereshina E.A., Mikhailova A.B., Politova G.A., Tereshina I.S., Kozlov V.I., Cwik J., Nenkov K., Alekseeva O.A., Filimonov A.V., Effect of Tb and Al substitution within the rare earth and cobalt sublattices on magnetothermal properties of Dy0.5Ho0.5Co2, J. Magn. Magn. Mater., 432, pp. 461-465, (2017)
  • [10] Politova G.A., Pankratov N.Yu., Vanina P.Yu., Filimonov A.V., Rudskoy A.I., Burkhanov G.S., Ilyushin A.S., Tereshina I.S., Magnetocaloric effect and magnetostrictive deformation in Tb-Dy-Gd-Co-Al with Laves phase structure, J. Magn. Magn. Mater., 470, pp. 50-54, (2019)