Structural properties and polarization switching of epitaxial Bi2FeCrO6 thin films grown on La2/3Sr1/3MnO3/SrTiO3 (111) substrates

被引:0
作者
Wendling L. [1 ]
Henning X. [1 ]
Roulland F. [1 ]
Lenertz M. [1 ]
Versini G. [1 ]
Schlur L. [1 ]
Chung U. [2 ]
Dinia A. [1 ]
Colis S. [1 ]
Rastei M.V. [1 ]
机构
[1] Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS, Université de Strasbourg, 23 rue du Loess, Strasbourg
[2] CNRS, Bordeaux INP, ICMCB, UMR 5026, University Bordeaux, Pessac
关键词
Bias field; Bismuth iron chromium oxide; Ferroelectricity; Polarization; Strain; Switching field;
D O I
10.1016/j.tsf.2022.139384
中图分类号
学科分类号
摘要
Ferroelectric Bi2FeCrO6 (BFCO) double perovskite thin films were grown by pulsed laser deposition on SrTiO3 (111) covered with a 20 nm thick La2/3Sr1/3MnO3 buffer layer. X-ray diffraction measurements performed in θ-2θ and φ scans modes reveal an epitaxial growth of the BFCO with a compressive in-plane strained structure and no spurious phases. The presence of superstructure diffraction peaks indicates an Fe-Cr cationic ordering along the growth axis. Local measurements realized by piezo-response force microscopy show an asymmetric polarization switching with respect to the external bias voltage suggesting the presence of a bias field. This agrees with a preferential ferroelectric polarization observed upon local poling of the BFCO film in opposite directions. The findings can be of importance for understanding the relationship between the atomic structure and polarization dynamics in ferroelectric thin-films. © 2022 Elsevier B.V.
引用
收藏
相关论文
共 34 条
[1]  
Damjanovic D., Muralt P., Setter N., Ferroelectric sensors, IEEE Sens. J., 1, pp. 191-206, (2001)
[2]  
Muralt P., Ferroelectric thin films for micro-sensors and actuators: a review, J. Micromech. Microeng., 10, pp. 136-146, (2000)
[3]  
Cho Y., Hashimoto S., Odagawa N., Tanaka K., Hiranaga Y., Realization of 10Tbit∕in.2 memory density and subnanosecond domain switching time in ferroelectric data storage, Appl. Phys. Lett., 87, (2005)
[4]  
Bea H., Bibes M., Herranz G., Zhu X.-H., Fusil S., Bouzehouane K., Jacquet E., Deranlot C., Barthelemy A., Integration of multiferroic BiFeO$_3$ thin films into heterostructures for spintronics, IEEE Trans. Magn., 44, pp. 1941-1945, (2008)
[5]  
Ramesh R., A new spin on spintronics, Nat. Mater., 9, pp. 380-381, (2010)
[6]  
Ma W., Zhu Y., Marwat M.A., Fan P., Xie B., Salamon D., Ye Z.G., Zhang H., Enhanced energy-storage performance with excellent stability under low electric fields in BNT–ST relaxor ferroelectric ceramics, J. Mater. Chem. C, 7, pp. 281-288, (2019)
[7]  
Veerapandiyan V., Benes F., Gindel T., Deluca M., Strategies to improve the energy storage properties of perovskite lead-free relaxor ferroelectrics: a review, Materials, 13, (2020)
[8]  
Yang S.Y., Seidel J., Byrnes S.J., Shafer P., Yang C.-H., Rossell M.D., Yu P., Chu Y.-H., Scott J.F., Ager J.W., Martin L.W., Ramesh R., Above-bandgap voltages from ferroelectric photovoltaic devices, Nat. Nanotechnol., 5, pp. 143-147, (2010)
[9]  
Grinberg I., West D.V., Torres M., Gou G., Stein D.M., Wu L., Chen G., Gallo E.M., Akbashev A.R., Davies P.K., Spanier J.E., Rappe A.M., Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials, Nature, 503, pp. 509-512, (2013)
[10]  
Baettig P., Spaldin N.A., Ab initio prediction of a multiferroic with large polarization and magnetization, Appl. Phys. Lett., 86, (2005)