Addition of potassium iodide reduces oxidative degradation of monoethanolamine (MEA)

被引:16
作者
Buvik V. [1 ]
Wanderley R.R. [1 ]
Knuutila H.K. [1 ]
机构
[1] Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim
来源
Chemical Engineering Science: X | 2021年 / 10卷
关键词
Amine solvents; CO[!sub]2[!/sub] absorption; Degradation inhibition; Inhibitors; Solvent stability;
D O I
10.1016/j.cesx.2021.100096
中图分类号
学科分类号
摘要
We introduce the addition of stable salts to aqueous MEA as a way of inhibiting oxidative degradation reactions. We performed oxidative degradation studies in aqueous MEA containing sodium chloride (NaCl) and potassium iodide (KI). These “salted amine solvents” have been shortened to SAS. The 2.0 %wt. and 1.0 %wt. KI SAS show remarkable oxidative degradation behavior. Loss of alkalinity after 42 days of oxidative degradation experiments with the 1.0 %wt. KI SAS was of 4%, whereas that of aqueous MEA was of 40% after only 21 days. We evaluated how the addition of stable salts impacts CO2 solubility, viscosity, and thermal degradation and corrosion behavior and verify negligible deviations from aqueous MEA. Thus, addition of stable salts affects oxidative degradation phenomena without deranging CO2 solubility or mass transfer rates. With the promising inhibition behavior of KI on MEA degradation, this work presents the initial steps towards making it a commercially viable degradation inhibitor. © 2021 The Author(s)
引用
收藏
相关论文
共 45 条
  • [1] Altshuller A.P., Schwab C.M., Bare M., Reactivity of oxidizing agents with potassium iodide reagent, Anal. Chem., 31, pp. 1987-1990, (1959)
  • [2] Amundsen T.G., Oi L.E., Eimer D.A., Density and viscosity of monoethanolamine + water + carbon dioxide from (25 to 80) °C, J. Chem. Eng. Data, 54, pp. 3096-3100, (2009)
  • [3] Bernhardsen I.M., Trollebo A.A., Perinu C., Knuutila H.K., Vapour-liquid equilibrium study of tertiary amines, single and in blend with 3-(methylamino)propylamine, for post-combustion CO2 capture, J. Chem. Thermodyn., 138, pp. 211-228, (2019)
  • [4] Blachly C.H., Ravner H., Stabilization of monoethanolamine solutions in carbon dioxide scrubbers, J. Chem. Eng. Data, 11, pp. 401-403, (1966)
  • [5] Blachly C.H., Ravner H., (1965)
  • [6] Blachly C.H., Ravner H., The Stabilization of Monoethanolamine Solutions for Submarine Carbon Dioxide Scrubbers, (1964)
  • [7] Blachly C.H., Ravner H., The Effect of Trace Amounts of Copper on the Stability of Monoethanolamine Scrubber Solutions, (1963)
  • [8] Bui M., Adjiman C.S., Bardow A., Anthony E.J., Boston A., Brown S., Fennell P.S., Fuss S., Galindo A., Hackett L.A., Hallett J.P., Herzog H.J., Jackson G., Kemper J., Krevor S., Maitland G.C., Matuszewski M., Metcalfe I.S., Petit C., Puxty G., Reimer J., Reiner D.M., Rubin E.S., Scott S.A., Shah N., Smit B., Trusler J.P.M., Webley P., Wilcox J., Mac Dowell N., Carbon capture and storage (CCS): the way forward, Energy Environ. Sci., (2018)
  • [9] Buvik V., Bernhardsen I.M., Figueiredo R.V., Vevelstad S.J., Goetheer E., van Os P., Knuutila H.K., Measurement and prediction of oxygen solubility in post-combustion CO2 capture solvents, Int. J. Greenh. Gas Control, (2020)
  • [10] Chi S., Rochelle G.T., Oxidative degradation of monoethanolamine, Ind. Eng. Chem. Res., 41, pp. 4178-4186, (2002)