High-redshift JWST predictions from Illustris TNG: Dust modelling and galaxy luminosity functions

被引:0
|
作者
Vogelsberger M. [1 ]
Nelson D. [2 ]
Pillepich A. [3 ]
Shen X. [1 ]
Marinacci F. [1 ,4 ,5 ]
Springel V. [2 ]
Pakmor R. [2 ]
Tacchella S. [4 ]
Weinberger R. [4 ]
Torrey P. [1 ,6 ]
Hernquist L. [4 ]
机构
[1] Department of Physics, Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, 02139, MA
[2] Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str 1, Garching
[3] Max-Planck-Institut für Astronomie, Königstuhl 17, Heidelberg
[4] Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, 02138, MA
[5] Department of Physics & Astronomy, University of Bologna, via Gobetti 93/2, Bologna
[6] Department of Astronomy, University of Florida, 316 Bryant Space Sciences Center, Gainesville, 32611, FL
来源
Mon. Not. R. Astron. Soc. | 2020年 / 4卷 / 5167-5201期
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
Galaxies: evolution; Galaxies: formation; Methods: numerical;
D O I
10.1093/MNRAS/STAA137
中图分类号
学科分类号
摘要
The James Webb Space Telescope (JWST) promises to revolutionize our understanding of the early Universe, and contrasting its upcoming observations with predictions of the Δ cold dark matter model requires detailed theoretical forecasts. Here, we exploit the large dynamic range of the IllustrisTNG simulation suite, TNG50, TNG100, and TNG300, to derive multiband galaxy luminosity functions from z = 2 to z = 10. We put particular emphasis on the exploration of different dust attenuation models to determine galaxy luminosity functions for the rest-frame ultraviolet (UV), and apparent wide NIRCam bands. Our most detailed dust model is based on continuum Monte Carlo radiative transfer calculations employing observationally calibrated dust properties. This calibration results in constraints on the redshift evolution of the dust attenuation normalization and dust-to-metal ratios yielding a stronger redshift evolution of the attenuation normalization compared to most previous theoretical studies. Overall we find good agreement between the rest-frame UV luminosity functions and observational data for all redshifts, also beyond the regimes used for the dust model calibrations. Furthermore, we also recover the observed high-redshift (z = 4-6) UV luminosity versus stellar mass relation, the H α versus star formation rate relation, and the H α luminosity function at z = 2. The bright end (MUV > −19.5) cumulative galaxy number densities are consistent with observational data. For the F200W NIRCam band, we predict that JWST will detect ∼80 (∼200) galaxies with a signal-to-noise ratio of 10 (5) within the NIRCam field of view, 2.2 × 2.2 arcmin2, for a total exposure time of 105 s in the redshift range z = 8 ± 0.5. These numbers drop to ∼10 (∼40) for an exposure time of 104 s. © 2020 The Author(s)
引用
收藏
页码:5167 / 5201
页数:34
相关论文
共 24 条
  • [21] High-redshift Galaxies and Black Holes Detectable with the JWST: A Population Synthesis Model from Infrared to X-Rays
    Volonteri, Marta
    Reines, Amy E.
    Atek, Hakim
    Stark, Daniel P.
    Trebitsch, Maxime
    ASTROPHYSICAL JOURNAL, 2017, 849 (02)
  • [22] Filamentary infall of cold gas and escape of Lya and hydrogen ionizing radiation from an interacting high-redshift galaxy
    Rauch, Michael
    Becker, George D.
    Haehnelt, Martin G.
    Gauthier, Jean-Rene
    Ravindranath, Swara
    Sargent, Wallace L. W.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 418 (02) : 1115 - 1126
  • [23] The evolution of the luminosity functions in the FORS deep field from low to high redshift -: II.: The red bands
    Gabasch, A
    Hopp, U
    Feulner, G
    Bender, R
    Seitz, S
    Saglia, RP
    Snigula, J
    Drory, N
    Appenzeller, I
    Heidt, J
    Mehlert, D
    Noll, S
    Böhm, A
    Jäger, K
    Ziegler, B
    ASTRONOMY & ASTROPHYSICS, 2006, 448 (01): : 101 - 121
  • [24] The evolution of the luminosity functions in the FORS Deep Field from low to high redshift -: I.: The blue bands
    Gabasch, A
    Bender, R
    Seitz, S
    Hopp, U
    Saglia, RP
    Feulner, G
    Snigula, J
    Drory, N
    Appenzeller, I
    Heidt, J
    Mehlert, D
    Noll, S
    Böhm, A
    Jäger, K
    Ziegler, B
    Fricke, KJ
    ASTRONOMY & ASTROPHYSICS, 2004, 421 (01) : 41 - 58