A Target Localization Method based on Optimized Newton Algorithm for MIMO Radar

被引:0
作者
Yang D. [1 ]
Han M. [2 ]
Xi Y. [1 ]
Liu Y. [1 ]
Yu W. [2 ]
机构
[1] State Grid Jiangxi Construction Company
[2] School of Information and Communication Engineering, Communication University of China
来源
EEA - Electrotehnica, Electronica, Automatica | 2022年 / 70卷 / 02期
基金
中国国家自然科学基金;
关键词
joint estimation; MIMO radar; optimized Newton; Target localization;
D O I
10.46904/eea.22.70.2.1108005
中图分类号
TN95 [雷达];
学科分类号
080904 ; 0810 ; 081001 ; 081002 ; 081105 ; 0825 ;
摘要
Target localization is one of the fundamental research topics in multiple input multiple output (MIMO) radar systems. In this paper, we focus on the localization parameter estimation including direction of departure (DoD), direction of arrival (DoA) and radar cross section (RCS) coefficients in monostatic MIMO radar systems. An optimized Newton algorithm is proposed to jointly estimate DoAs/DoDs and RCS coefficients. Its angle estimation performance outperforms traditional Capon, MUSIC and ESPRIT methods. The proposed localization algorithm also has great RCS coefficient estimation performance. Moreover, the joint estimation performance of the proposed optimized Newton algorithm is superior even with unknown target numbers and low sampling numbers. Simulation results verify the effectiveness of the proposed optimized Newton algorithm. © 2022, Editura ELECTRA. All rights reserved.
引用
收藏
页码:37 / 45
页数:8
相关论文
共 26 条
  • [21] Zheng G, Chen B, Yang M, Et al., Unitary ESPRIT algorithm for bistatic MIMO radar, Electronics Letters, 48, 3, pp. 179-181, (2012)
  • [22] Hu C., Dai L., Mir T., Gao Z., Fang J., Super-Resolution Channel Estimation for MmWave Massive MIMO With Hybrid Precoding, IEEE Transactions on Vehicular Technology, 67, 9, pp. 8954-8958, (2018)
  • [23] Fang J., Wang F., Shen Y., Li H., Blum R. S., Super-Resolution Compressed Sensing for Line Spectral Estimation: An Iterative Reweighted Approach, IEEE Transactions on Signal Processing, 64, 18, pp. 4649-4662, (2016)
  • [24] Shen Y., Fang J., Li H., Exact Reconstruction Analysis of Log-Sum Minimization for Compressed Sensing, IEEE Signal Processing Letters, 20, 12, pp. 1223-1226, (2013)
  • [25] Candes E.J., Wakin M.B., Boyd S.P, Enhancing sparsity by reweighted l 1 minimization, J. Fourier Anal. Appl, 14, pp. 877-905, (2008)
  • [26] Lange K, Hunter D R, Yang I, Et al., Optimization Transfer Using Surrogate Objective Functions, Journal of Computa-tional and Graphical Statistics, 9, 1, pp. 1-20, (2000)