A Target Localization Method based on Optimized Newton Algorithm for MIMO Radar

被引:0
作者
Yang D. [1 ]
Han M. [2 ]
Xi Y. [1 ]
Liu Y. [1 ]
Yu W. [2 ]
机构
[1] State Grid Jiangxi Construction Company
[2] School of Information and Communication Engineering, Communication University of China
来源
EEA - Electrotehnica, Electronica, Automatica | 2022年 / 70卷 / 02期
基金
中国国家自然科学基金;
关键词
joint estimation; MIMO radar; optimized Newton; Target localization;
D O I
10.46904/eea.22.70.2.1108005
中图分类号
TN95 [雷达];
学科分类号
080904 ; 0810 ; 081001 ; 081002 ; 081105 ; 0825 ;
摘要
Target localization is one of the fundamental research topics in multiple input multiple output (MIMO) radar systems. In this paper, we focus on the localization parameter estimation including direction of departure (DoD), direction of arrival (DoA) and radar cross section (RCS) coefficients in monostatic MIMO radar systems. An optimized Newton algorithm is proposed to jointly estimate DoAs/DoDs and RCS coefficients. Its angle estimation performance outperforms traditional Capon, MUSIC and ESPRIT methods. The proposed localization algorithm also has great RCS coefficient estimation performance. Moreover, the joint estimation performance of the proposed optimized Newton algorithm is superior even with unknown target numbers and low sampling numbers. Simulation results verify the effectiveness of the proposed optimized Newton algorithm. © 2022, Editura ELECTRA. All rights reserved.
引用
收藏
页码:37 / 45
页数:8
相关论文
共 26 条
  • [1] Ahmed S., Alouini M., MIMO-Radar Waveform Covariance Matrix for High SINR and Low Side-Lobe Levels, IEEE Transactions on Signal Processing, 62, 8, pp. 2056-2065, (2014)
  • [2] Davis M. S., Showman G. A., Lanterman A. D., Coherent MIMO radar: The phased array and orthogonal waveforms, IEEE Aerospace and Electronic Systems Magazine, 29, 8, pp. 76-91, (2014)
  • [3] Chen X., Chen B., Guan J., Huang Y., He Y., Space-Range-Doppler Focus-Based Low-observable Moving Target Detection Using Frequency Diverse Array MIMO Radar, IEEE Access, 6, pp. 43892-43904, (2018)
  • [4] Jacobsson S., Durisi G., Coldrey M., Gustavsson U., Studer C., One-bit massive MIMO: Channel estimation and high-order modulations, 2015 IEEE International Conference on Communication Workshop (ICCW), pp. 1304-1309, (2015)
  • [5] Yang P., Yang H., Optimal Linear Detection for MIMO Systems with Finite Constellation Inputs, IEEE Signal Processing Letters, 26, 4, pp. 612-616, (2019)
  • [6] Imani S., Bolhasani M., Ghorashi S. A., Rashid M., Waveform Design in MIMO Radar Using Radial Point Interpolation Method, IEEE Communications Letters, 22, 10, pp. 2076-2079, (2018)
  • [7] Urco J. M., Chau J. L., Weber T., Vierinen J. P., Volz R., Sparse Signal Recovery in MIMO Specular Meteor Radars With Waveform Diversity, IEEE Transactions on Geoscience and Remote Sensing, 57, 12, pp. 10088-10098, (2019)
  • [8] Du J, Han M, Jin L, Et al., Target Localization Methods Based on Iterative Super-Resolution for Bistatic MIMO Radar, Electronics, 9, 2, (2020)
  • [9] Nion D., Sidiropoulos N. D., Tensor Algebra and Multidimensional Harmonic Retrieval in Signal Processing for MIMO Radar, IEEE Transactions on Signal Processing, 58, 11, pp. 5693-5705, (2010)
  • [10] Xu B., Zhao Y., Transmit Beamspace-Based Unitary Parallel Factor Method for DOD and DOA Estimation in Bistatic MIMO Radar, IEEE Access, 6, pp. 65573-65581, (2018)