Soliton breathers in spin-1 Bose–Einstein condensates

被引:0
作者
冀慎统 [1 ]
颜培根 [1 ]
刘学深 [1 ]
机构
[1] Institute of Atomic and Molecular Physics, Jilin University
基金
中国国家自然科学基金;
关键词
spin-1 Bose–Einstein condensate; soliton breathers; Gross–Pitaecskii equations(GPEs);
D O I
暂无
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We consider a spin-1 Bose–Einstein condensate trapped in a harmonic potential with different nonlinearity coefficients. We illustrate the dynamics of soliton breathers in two-component and three-component states by numerically solving the one-dimensional time-dependent coupled Gross–Pitaecskii equations(GPEs). We present that two condensates with repulsive interspecies interactions make elastic collision and novel soliton breathers are created in two-component state. We also demonstrate novel soliton breathers in three-component state with attractive coupling constants. Furthermore, possible reasons for creating soliton breathers are discussed.
引用
收藏
页码:151 / 156
页数:6
相关论文
共 5 条
  • [1] Symmetry breaking of a Bose–Fermi mixture in a triple-well potential[J] . Pei-Gen Yan,Yuan-Sheng Wang,Shen-Tong Ji,Xue-Shen Liu. Physics Letters A . 2012 (45)
  • [2] Spontaneous symmetry breaking of a Bose—Fermi mixture in a two-dimensional double-well potential[J] . Wang Yuan-Sheng,Yan Pei-Gen,Li Bin,Liu Xue-Shen. Chinese Physics B . 2012 (1)
  • [3] Precisely controllable bright nonautonomous solitons in Bose–Einstein condensate[J] . Li-Chen Zhao,Zhan-Ying Yang,Li-Ming Ling,Jie Liu. Physics Letters A . 2011 (17)
  • [4] Tunneling of Bose—Einstein condensate and interference effect in a harmonic trap with a Gaussian energy barrier[J] . Hua Wei,Li Bin,Liu Xue-Shen. Chinese Physics B . 2011 (6)
  • [5] Numerical solution of the Gross–Pitaevskii equation for Bose–Einstein condensation[J] . Weizhu Bao,Dieter Jaksch,Peter A. Markowich. Journal of Computational Physics . 2003 (1)