Image Denoising Using Dual Convolutional Neural Network with Skip Connection

被引:0
|
作者
Mengnan L [1 ]
Xianchun Zhou [2 ]
Zhiting Du [1 ]
Yuze Chen [1 ]
Binxin Tang [1 ]
机构
[1] School of Electronics Information Engineering, Nanjing University of Information Science & Technology
[2] School of Artificial Intelligence, Nanjing University of Information Science and
关键词
D O I
暂无
中图分类号
TP183 [人工神经网络与计算]; TP391.41 [];
学科分类号
080203 ;
摘要
In recent years, deep convolutional neural networks have shown superior performance in image denoising. However, deep network structures often come with a large number of model parameters, leading to high training costs and long inference times, limiting their practical application in denoising tasks. This paper proposes a new dual convolutional denoising network with skip connections(DECDNet), which achieves an ideal balance between denoising effect and network complexity. The proposed DECDNet consists of a noise estimation network, a multi-scale feature extraction network, a dual convolutional neural network, and dual attention mechanisms. The noise estimation network is used to estimate the noise level map, and the multi-scale feature extraction network is combined to improve the model's flexibility in obtaining image features. The dual convolutional neural network branch design includes convolution and dilated convolution interactive connections, with the lower branch consisting of dilated convolution layers, and both branches using skip connections. Experiments show that compared with other models, the proposed DECDNet achieves superior PSNR and SSIM values at all compared noise levels, especially at higher noise levels, showing robustness to images with higher noise levels. It also demonstrates better visual effects, maintaining a balance between denoising and detail preservation.
引用
收藏
页码:74 / 85
页数:12
相关论文
共 50 条
  • [21] DenoisingNet: An Efficient Convolutional Neural Network for Image Denoising
    Li, Yang
    Miao, Zhuang
    Zhang, Rui
    Wang, Jiabao
    2019 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND BIG DATA (ICAIBD 2019), 2019, : 409 - 413
  • [22] Infrared image denoising based on convolutional neural network
    Sun, Cheng
    Pan, Mingqiang
    Zhou, Bin
    Zhu, Zongjian
    2018 13TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2018, : 499 - 502
  • [23] Radiation Image Denoising Based on Convolutional Neural Network
    Sun Y.-W.
    Liu H.
    Cong P.
    Li L.-T.
    Xiang X.-C.
    Guo X.-J.
    Yuanzineng Kexue Jishu, 9 (1678-1682): : 1678 - 1682
  • [24] Detail retaining convolutional neural network for image denoising
    Li, Xiaoxia
    Xiao, Juan
    Zhou, Yingyue
    Ye, Yuanzheng
    Lv, Nianzu
    Wang, Xueyuan
    Wang, Shunli
    Gao, ShaoBing
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2020, 71
  • [25] Image super-resolution using convolutional neural network with symmetric skip connections
    Zou, Yan
    Xiao, Fujun
    Zhang, Linfei
    Chen, Qian
    Wang, Bowen
    Hu, Yan
    FOURTH INTERNATIONAL CONFERENCE ON PHOTONICS AND OPTICAL ENGINEERING, 2021, 11761
  • [26] Edge-preserving image denoising using a deep convolutional neural network
    Shandoosti, Hamid Reza
    Rahemi, Zahra
    SIGNAL PROCESSING, 2019, 159 : 20 - 32
  • [27] Medical image denoising using convolutional neural network: a residual learning approach
    Worku Jifara
    Feng Jiang
    Seungmin Rho
    Maowei Cheng
    Shaohui Liu
    The Journal of Supercomputing, 2019, 75 : 704 - 718
  • [28] Medical image denoising using convolutional neural network: a residual learning approach
    Jifara, Worku
    Jiang, Feng
    Rho, Seungmin
    Cheng, Maowei
    Liu, Shaohui
    JOURNAL OF SUPERCOMPUTING, 2019, 75 (02): : 704 - 718
  • [29] Denoising method of borehole acoustic reflection image using convolutional neural network
    Kong, Fantong
    Xu, Hanchang
    Gu, Xihao
    Luo, Chengming
    Li, Shengqing
    GEOENERGY SCIENCE AND ENGINEERING, 2023, 226
  • [30] EFID: Edge-Focused Image Denoising Using a Convolutional Neural Network
    Holla, K. Shivarama
    Park, Nokap
    Lee, Bumshik
    IEEE ACCESS, 2023, 11 : 9613 - 9626