Quantum information entropy for one-dimensional system undergoing quantum phase transition

被引:0
作者
宋旭东 [1 ]
董世海 [2 ]
张宇 [3 ]
机构
[1] Software Institute, Dalian Jiaotong University
[2] CIDETEC, Instituto Polit′ecnico Nacional, Unidad Profesional ALM
[3] Department of Physics, Liaoning Normal University
关键词
quantum information entropy; quantum phase transition; entropy uncertainty relation;
D O I
暂无
中图分类号
O413 [量子论];
学科分类号
070201 ;
摘要
Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic "Landau" potential in a numerical way. Particularly, it is found that the phase transitional behavior of the system can be well expressed by the evolution of quantum information entropy. The calculated results also indicate that the position entropy Sx and the momentum entropy Sp at the critical point of phase transition may vary with the mass parameter M but their sum remains as a constant independent of M for a given excited state. In addition, the entropy uncertainty relation is proven to be robust during the whole process of the phase transition.
引用
收藏
页码:42 / 46
页数:5
相关论文
共 11 条
[1]  
Fisher information for the position-dependent mass Schr?dinger system[J] . B.J. Falaye,F.A. Serrano,Shi-Hai Dong. Physics Letters A . 2016 (1-2)
[2]  
Shannon information entropies for position-dependent mass Schr?dinger problem with a hyperbolic well[J] . Sun Guo-Hua,Du?an Popov,Oscar Camacho-Nieto,Dong Shi-Hai. Chinese Physics B . 2015 (10)
[3]   The Noncommutative Landau Problem in Podolsky's Generalized Electrodynamics [J].
Diao Xin-Feng ;
Long Chao-Yun ;
Kong Bo ;
Long Zheng-Wen .
CHINESE PHYSICS LETTERS, 2015, 32 (04)
[4]   Quantum information entropy for a hyperbolical potential function [J].
Valencia-Torres, R. ;
Sun, Guo-Hua ;
Dong, Shi-Hai .
PHYSICA SCRIPTA, 2015, 90 (03)
[5]   Quantum information entropies for a squared tangent potential well [J].
Dong, Shishan ;
Sun, Guo-Hua ;
Dong, Shi-Hai ;
Draayer, J. P. .
PHYSICS LETTERS A, 2014, 378 (03) :124-130
[6]  
Quantum information entropies of the eigenstates for the P?schl—Teller-like potential[J] . Guo-Hua Sun,M. Avila Aoki,Shi-Hai Dong. Chinese Physics B . 2013 (5)
[7]   Asymptotics of the information entropy for Jacobi and Laguerre polynomials with varying weights [J].
Buyarov, VS ;
Dehesa, JS ;
Martínez-Finkelshtein, A ;
Saff, EB .
JOURNAL OF APPROXIMATION THEORY, 1999, 99 (01) :153-166
[8]   UNCERTAINTY RELATIONS FOR INFORMATION ENTROPY IN WAVE MECHANICS [J].
BIALYNICKIBIRULA, I ;
MYCIELSKI, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 44 (02) :129-132
[9]  
IACHELLO F,ZAMFIR N V. Phys Rev Lett . 2004
[10]   Math [P]. 
COLEMAN KENNETH ROSS .
美国专利 :US2013020766A1 ,2013-01-24