Exploration of high-speed 3.0 THz imaging with a 65 nm CMOS process

被引:0
作者
Min Liu [1 ,2 ]
Ziteng Cai [1 ,3 ]
Jian Liu [1 ,2 ]
Nanjian Wu [1 ,2 ]
Liyuan Liu [1 ,2 ]
机构
[1] State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences
[2] Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences
[3] Faculty of Information Technology, Beijing University of
关键词
D O I
暂无
中图分类号
TN248 [激光器]; O441.4 [电磁波与电磁场];
学科分类号
摘要
This paper describes a promising route for the exploration and development of 3.0 THz sensing and imaging with FET-based power detectors in a standard 65 nm CMOS process. Based on the plasma-wave theory proposed by Dyakonov and Shur, we designed high-responsivity and low-noise multiple detectors for monitoring a pulse-mode 3.0 THz quantum cascade laser(QCL). Furthermore, we present a fully integrated high-speed 32 × 32-pixel 3.0 THz CMOS image sensor(CIS). The full CIS measures 2.81 × 5.39 mm2 and achieves a 423 V/W responsivity(Rv) and a 5.3 nW integral noise equivalent power(NEP) at room temperature. In experiments, we demonstrate a testing speed reaching 319 fps under continuous-wave(CW) illumination of a 3.0 THz QCL. The results indicate that our terahertz CIS has excellent potential in cost-effective and commercial THz imaging and material detection.
引用
收藏
页码:71 / 78
页数:8
相关论文
共 23 条
  • [1] Continuous-wave single-mode quantum cascade laser at 5.1 THz based on graded sampled grating design.[J].WEIJIANG LI;YU MA;YUNFEI XU;JUNQI LIU;LIJUN WANG;NING ZHUO;QUANYONG LU;JINCHUAN ZHANG;SHENQIANG ZHAI;SHUMAN LIU;FENGQI LIU;.Photonics Research.2022, 12
  • [2] 基于65 nm标准CMOS工艺的3.0 THz探测器
    方桐
    刘力源
    刘朝阳
    冯鹏
    李媛媛
    刘俊岐
    刘剑
    吴南健
    [J]. 红外与毫米波学报, 2020, 39 (01) : 56 - 64
  • [3] Quantum cascade lasers: from sketch to mainstream in the mid and far infrared.[J].Ning Zhuo;Fengqi Liu;Zhanguo Wang;.Journal of Semiconductors.2020, 01
  • [4] Column readout circuit with improved offset mismatch and charge sharing for CMOS image sensor.[J].Zhongjie Guo;Ningmei Yu;Longsheng Wu;.Journal of Semiconductors.2019, 12
  • [5] Perovskite semiconductors for direct X-ray detection and imaging.[J].Yirong Su;Wenbo Ma;Yang (Michael) Yang;.Journal of Semiconductors.2020, 05
  • [6] Sensitivity of Field-Effect Transistor-Based Terahertz Detectors
    Javadi, Elham
    But, Dmytro B.
    Ikamas, Kestutis
    Zdanevicius, Justinas
    Knap, Wojciech
    Lisauskas, Alvydas
    [J]. SENSORS, 2021, 21 (09)
  • [7] Efficient Detection of 3 THz Radiation from Quantum Cascade Laser Using Silicon CMOS Detectors
    Ikamas, Kestutis
    Lisauskas, Alvydas
    Boppel, Sebastian
    Hu, Qing
    Roskos, Hartmut G.
    [J]. JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2017, 38 (10) : 1183 - 1188
  • [8] Recent advances in terahertz technology for biomedical applications
    Sun, Qiushuo
    He, Yuezhi
    Liu, Kai
    Fan, Shuting
    Parrott, Edward P. J.
    Pickwell-MacPherson, Emma
    [J]. QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2017, 7 (03) : 345 - 355
  • [9] Non-destructive Investigation of Paintings on Canvas by Continuous Wave Terahertz Imaging and Flash Thermography
    Zhang, Hai
    Sfarra, Stefano
    Saluja, Karan
    Peeters, Jeroen
    Fleuret, Julien
    Duan, Yuxia
    Fernandes, Henrique
    Avdelidis, Nicolas
    Ibarra-Castanedo, Clemente
    Maldague, Xavier
    [J]. JOURNAL OF NONDESTRUCTIVE EVALUATION, 2017, 36 (02)
  • [10] A Low-Noise CMOS THz Imager Based on Source Modulation and an In-Pixel High-Q Passive Switched-Capacitor N-Path Filter
    Boukhayma, Assim
    Dupret, Antoine
    Rostaing, Jean-Pierre
    Enz, Christian
    [J]. SENSORS, 2016, 16 (03):