Advances in estimation methods of vegetation water content based on optical remote sensing techniques

被引:0
|
作者
ZHANG JiaHuaXU YunYAO FengMeiWANG PeiJuanGUO WenJuanLI Li YANG LiMin Chinese Academy of Meteorological SciencesBeijing China Graduated University of Chinese Academy of SciencesBeijing China USGSEROS Data CenterSouth Dakota USA [1 ,1 ,2 ,1 ,1 ,1 ,3 ,1 ,100081 ,2 ,100049 ,3 ,57198 ]
机构
关键词
D O I
暂无
中图分类号
Q948 [植物生态学和植物地理学];
学科分类号
071012 ; 0713 ;
摘要
Quantitative estimation of vegetation water content(VWC) using optical remote sensing techniques is helpful in forest fire as-sessment,agricultural drought monitoring and crop yield estimation.This paper reviews the research advances of VWC retrieval using spectral reflectance,spectral water index and radiative transfer model(RTM) methods.It also evaluates the reli-ability of VWC estimation using spectral water index from the observation data and the RTM.Focusing on two main definitions of VWC-the fuel moisture content(FMC) and the equivalent water thickness(EWT),the retrieval accuracies of FMC and EWT using vegetation water indices are analyzed.Moreover,the measured information and the dataset are used to estimate VWC,the results show there are significant correlations among three kinds of vegetation water indices(i.e.,WSI,NDⅡ,NDWI1640,WI/NDVI) and canopy FMC of winter wheat(n=45).Finally,the future development directions of VWC detection based on optical remote sensing techniques are also summarized.
引用
收藏
页码:1159 / 1167
页数:9
相关论文
共 50 条
  • [31] Soil water content estimation using a remote sensing based hybrid evapotranspiration modeling approach
    Neale, Christopher M. U.
    Geli, Hatim M. E.
    Kustas, William P.
    Alfieri, Joseph G.
    Gowda, Prasanna H.
    Evett, Steven R.
    Prueger, John H.
    Hipps, Lawrence E.
    Dulaney, Wayne P.
    Chavez, Jose L.
    French, Andrew N.
    Howell, Terry A.
    ADVANCES IN WATER RESOURCES, 2012, 50 : 152 - 161
  • [32] ESTIMATION OF SUNFLOWER CROP PRODUCTION BASED ON REMOTE SENSING TECHNIQUES
    Herbei, Mihai Valentin
    Popescu, Cosmin Alin
    Bertici, Radu
    Sala, Florin
    AGROLIFE SCIENTIFIC JOURNAL, 2023, 12 (01): : 87 - 96
  • [33] Estimation of forest canopy nitrogen content based on remote sensing
    Yang Xi-Guang
    Yu Ying
    Huang Hai-Jun
    Fan Wen-Yi
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2012, 31 (06) : 536 - 543
  • [34] Combining Microwave and Optical Remote Sensing to Characterize Global Vegetation Water Status
    Wang, Xin
    Zhang, Zhengxiang
    Lu, Shan
    Zhen, Shuo
    Zhao, Hang
    Yin, Yiwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [35] Optical spectrometer and software for remote sensing of vegetation
    Yatsenko, VA
    Kochubey, SM
    Donets, VV
    Khandriga, PA
    Chichik, PD
    CAOL 2005: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ADVANCED OPTOELECTRONICS AND LASERS, VOL 2, 2005, : 267 - 269
  • [36] Depth Estimation of Submerged Aquatic Vegetation in Clear Water Streams Using Low-Altitude Optical Remote Sensing
    Visser, Fleur
    Buis, Kerst
    Verschoren, Veerle
    Meire, Patrick
    SENSORS, 2015, 15 (10) : 25287 - 25312
  • [37] STUDY ON OPTICAL REMOTE SENSING ATMOSPHERIC AEROSOL AND WATER VAPOUR CONTENT
    赵柏林
    王强
    毛节泰
    秦瑜
    Science in China,SerB, 1984, Ser.B1984 (04) : 407 - 419
  • [38] The Responses of Vegetation Water Content (EWT) Along a Coastal Region using Remote Sensing`
    Gao, Zhiqiang
    Wang, Tingting
    Ning, Jicai
    Gao, Wei
    REMOTE SENSING AND MODELING OF ECOSYSTEMS FOR SUSTAINABILITY XI, 2014, 9221
  • [39] Comparison of Remote Sensing Estimation Methods for Winter Wheat Leaf Nitrogen Content
    Zhang, Chunlan
    Tang, Fuquan
    Li, Heli
    Yang, Guijun
    Feng, Haikuan
    Liu, Chang
    COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE XI, CCTA 2017, PT II, 2019, 546 : 173 - 184
  • [40] Impacts of reservoirs on groundwater and vegetation: a study based on remote sensing and GIS techniques
    Saraf, AK
    Choudhary, PR
    Sarma, B
    Ghosh, P
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2001, 22 (13) : 2439 - 2448