Advances in estimation methods of vegetation water content based on optical remote sensing techniques

被引:0
|
作者
ZHANG JiaHuaXU YunYAO FengMeiWANG PeiJuanGUO WenJuanLI Li YANG LiMin Chinese Academy of Meteorological SciencesBeijing China Graduated University of Chinese Academy of SciencesBeijing China USGSEROS Data CenterSouth Dakota USA [1 ,1 ,2 ,1 ,1 ,1 ,3 ,1 ,100081 ,2 ,100049 ,3 ,57198 ]
机构
关键词
D O I
暂无
中图分类号
Q948 [植物生态学和植物地理学];
学科分类号
071012 ; 0713 ;
摘要
Quantitative estimation of vegetation water content(VWC) using optical remote sensing techniques is helpful in forest fire as-sessment,agricultural drought monitoring and crop yield estimation.This paper reviews the research advances of VWC retrieval using spectral reflectance,spectral water index and radiative transfer model(RTM) methods.It also evaluates the reli-ability of VWC estimation using spectral water index from the observation data and the RTM.Focusing on two main definitions of VWC-the fuel moisture content(FMC) and the equivalent water thickness(EWT),the retrieval accuracies of FMC and EWT using vegetation water indices are analyzed.Moreover,the measured information and the dataset are used to estimate VWC,the results show there are significant correlations among three kinds of vegetation water indices(i.e.,WSI,NDⅡ,NDWI1640,WI/NDVI) and canopy FMC of winter wheat(n=45).Finally,the future development directions of VWC detection based on optical remote sensing techniques are also summarized.
引用
收藏
页码:1159 / 1167
页数:9
相关论文
共 50 条
  • [1] Advances in estimation methods of vegetation water content based on optical remote sensing techniques
    Zhang JiaHua
    Xu Yun
    Yao FengMei
    Wang PeiJuan
    Guo WenJuan
    Li Li
    Yang LiMin
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2010, 53 (05) : 1159 - 1167
  • [2] Advances in estimation methods of vegetation water content based on optical remote sensing techniques
    ZHANG JiaHua1
    2 Graduated University of Chinese Academy of Sciences
    3 USGS/EROS Data Center
    Science China(Technological Sciences), 2010, (05) : 1159 - 1167
  • [3] Advances in estimation methods of vegetation water content based on optical remote sensing techniques
    JiaHua Zhang
    Yun Xu
    FengMei Yao
    PeiJuan Wang
    WenJuan Guo
    Li Li
    LiMin Yang
    Science China Technological Sciences, 2010, 53 : 1159 - 1167
  • [4] Optical Sensing of Vegetation Water Content: A Synthesis Study
    Gao, Ying
    Walker, Jeffrey P.
    Allahmoradi, Mahdi
    Monerris, Alessandra
    Ryu, Dongryeol
    Jackson, Thomas J.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (04) : 1456 - 1464
  • [5] ABOVEGROUND BIOMASS ESTIMATION OF CAOHAI WETLAND VEGETATION BASED ON OPTICAL AND RADAR REMOTE SENSING
    Wang, Z. H.
    Dai, H. Y.
    Liu, J. B.
    Ren, J. T.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2023, 85 (01): : 339 - 350
  • [6] ABOVEGROUND BIOMASS ESTIMATION OF CAOHAI WETLAND VEGETATION BASED ON OPTICAL AND RADAR REMOTE SENSING
    Wang, Z.H.
    Dai, H.Y.
    Liu, J.B.
    Ren, J.T.
    UPB Scientific Bulletin, Series C: Electrical Engineering and Computer Science, 2023, 85 (01): : 339 - 350
  • [7] GLOBAL WATER VAPOR CONTENT AND VEGETATION CHANGE ANALYSIS BASED ON REMOTE SENSING DATA
    Mao, K. B.
    Ma, Y.
    Zuo, Z. Y.
    Jiao, Y. Q.
    Wang, F.
    Liu, Q.
    Sun, Z. W.
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5205 - 5208
  • [8] Remote sensing and estimation of root zone water content
    Starks, PJ
    Jackson, TJ
    REMOTE SENSING AND HYDROLOGY 2000, 2001, (267): : 409 - 411
  • [9] Advances in topographic correction methods for optical remote sensing imageries
    Lin X.
    Wen J.
    Wu S.
    Hao D.
    Xiao Q.
    Liu Q.
    Yaogan Xuebao/Journal of Remote Sensing, 2020, 24 (08): : 958 - 974
  • [10] Remote sensing of vegetation water content using shortwave infrared reflectances
    Hunt, E. Raymond, Jr.
    Yilmaz, M. Tugrul
    REMOTE SENSING AND MODELING OF ECOSYSTEMS FOR SUSTAINABILITY IV, 2007, 6679