A DERIVATIVE-HILBERT OPERATOR ACTING FROM LOGARITHMIC BLOCH SPACES TO BERGMAN SPACES

被引:0
|
作者
叶善力
徐芸
机构
[1] SchoolofScience,ZhejiangUniversityofScienceandTechnology
关键词
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
Let μ be a positive Borel measure on the interval [0,1).The Hankel matrix Hμ=(μn,k)n,k≥0 with entries μn,k=μn+k,where μ_n=∫[0,1)t~n dμ(t),induces,formally,the operator ■ where ■ is an analytic function in D.We characterize the measures μ for which DHμ is bounded(resp.,compact) operator from the logarithmic Bloch space ■ into the Bergman space Ap,where 0≤α<∞,0 μ is bounded(resp.,compact) operator from the logarithmic Bloch space ■ into the classical Bloch space ■.
引用
收藏
页码:1916 / 1930
页数:15
相关论文
共 50 条