共 24 条
- [1] A novel interpretable multilevel wavelet decomposition deep network for actual heartbeat classification.[J].JIN YanRui;LI ZhiYuan;TIAN YuanYuan;WEI XiaoYang;LIU ChengLiang;.Science China(Technological Sciences).2024, 06
- [2] Machinery fault diagnostic method based on numerical simulation driving partial transfer learning.[J].LOU YunXia;KUMAR Anil;XIANG JiaWei;.Science China(Technological Sciences).2023, 12
- [3] 基于多传感器多维特征加权自适应融合的液压换向阀故障诊断(英文).[J].施锦川;任燕;汤何胜;向家伟;.Journal of Zhejiang University-Science A(Applied Physics & Engineering).2022, 04
- [4] A novel adaptive generalized domain data fusion-driven kernel sparse representation classification method for intelligent bearing fault diagnosis.[J].Lingli Cui;Zhichao Jiang;Dongdong Liu;Huaqing Wang.Expert Systems With Applications.2024,
- [5] Adaptive variational autoencoding generative adversarial networks for rolling bearing fault diagnosis.[J].Wang Xin;Jiang Hongkai;Wu Zhenghong;Yang Qiao.Advanced Engineering Informatics.2023,
- [6] An integrated framework via key-spectrum entropy and statistical properties for bearing dynamic health monitoring and performance degradation assessment.[J].Yao Renhe;Jiang Hongkai;Yang Chunxia;Zhu Hongxuan;Liu Chaoqiang.Mechanical Systems and Signal Processing.2023,
- [7] Adaptive synchroextracting transform and its application in bearing fault diagnosis..[J].Yan Zhu;Xu Yonggang;Zhang Kun;Hu Aijun;Yu Gang.ISA transactions.2023,
- [8] Sparse representation by novel cascaded dictionary for bearing fault diagnosis using bi-damped wavelet.[J].Zhang Long;Zhao Lijuan;Wang Chaobing.The International Journal of Advanced Manufacturing Technology.2022, 7-8
- [9] Bearing fault diagnosis using time segmented Fourier synchrosqueezed transform images and convolution neural network.[J].Gundewar Swapnil K.;Kane Prasad V..Measurement.2022,
- [10] Bearing incipient fault feature extraction using adaptive period matching enhanced sparse representation.[J].Yao Renhe;Jiang Hongkai;Li Xingqiu;Cao Jiping.Mechanical Systems and Signal Processing.2022,