msf, a forecasting library to predict short-term electricity demand based on multiple seasonal time series

被引:0
|
作者
Trull, Oscar [1 ]
Garcia-Diaz, J. Carlos [1 ]
Peiro-Signes, A. [2 ]
机构
[1] Univ Politecn Valencia, Dept Appl Stat & Operat Res & Qual, E-46022 Valencia, Spain
[2] Univ Politecn Valencia, Management Dept, E46022 Valencia, Spain
关键词
Forecasting; Electricity; Toolbox; Multiple seasonal; DIMS; HOLT-WINTERS; LOAD;
D O I
10.1016/j.jocs.2024.102280
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Transmission system operators have a growing need for more accurate forecasting of electricity demand. Current electricity systems largely require demand forecasting so that the electricity market establishes electricity prices as well as the programming of production units. The companies that are part of the electrical system use exclusive software to obtain predictions, based on the use of time series and prediction tools, whether statistical or artificial intelligence. However, the most common form of prediction is based on hybrid models that use both technologies. In any case, it is software with a complicated structure, with a large number of associated variables and that requires a high computational load to make predictions. On many occasions, the resources to reach these predictions are not available to researchers. In this paper we present a MATLAB (R) toolbox created to predict electrical demand. The toolbox implements multiple seasonal time series forecasting methods such as new generalized multiple seasonal Holt-Winters exponential smoothing models and neural network models, among others. The models presented include novel discrete interval mobile seasonalities (DIMS) to improve forecasting on special days. The paper also describes the computational analysis conducted to apply the toolbox in various electrical systems in Europe, where the results obtained can be seen. The use of this library opens a new way of research for the use of models with discrete and complex seasonalities in other fields of application.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Triple seasonal methods for short-term electricity demand forecasting
    Taylor, James W.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 204 (01) : 139 - 152
  • [2] Short-Term Electricity Demand Forecasting Based on Multiple LSTMs
    Yong, Binbin
    Shen, Zebang
    Wei, Yongqiang
    Shen, Jun
    Zhou, Qingguo
    ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, 2020, 11691 : 192 - 200
  • [3] Performance Analysis of Short-term Electricity Demand Forecasting for Thailand
    Chapagain, Kamal
    Kittipiyakul, Somsak
    Kulthanavit, Pisut
    2019 34TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2019), 2019, : 116 - 119
  • [4] Tailoring Seasonal Time Series Models to Forecast Short-Term Water Demand
    Arandia, Ernesto
    Ba, Amadou
    Eck, Bradley
    McKenna, Sean
    JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT, 2016, 142 (03)
  • [5] Short-term electricity price modeling and forecasting using wavelets and multivariate time series
    Xu, HT
    Niimura, T
    2004 IEEE PES POWER SYSTEMS CONFERENCE & EXPOSITION, VOLS 1 - 3, 2004, : 208 - 212
  • [6] A Single Scalable LSTM Model for Short-Term Forecasting of Massive Electricity Time Series
    Alonso, Andres M.
    Nogales, Francisco J.
    Ruiz, Carlos
    ENERGIES, 2020, 13 (20)
  • [7] Short-term balancing of supply and demand in an electricity system: forecasting and scheduling
    Jeanne Aslak Petersen
    Ditte Mølgård Heide-Jørgensen
    Nina Kildegaard Detlefsen
    Trine Krogh Boomsma
    Annals of Operations Research, 2016, 238 : 449 - 473
  • [8] Short-term balancing of supply and demand in an electricity system: forecasting and scheduling
    Petersen, Jeanne Aslak
    Heide-Jorgensen, Ditte Molgard
    Detlefsen, Nina Kildegaard
    Boomsma, Trine Krogh
    ANNALS OF OPERATIONS RESEARCH, 2016, 238 (1-2) : 449 - 473
  • [9] Short-Term Forecasting of Hourly Electricity Power Demand Reggresion and Cluster Methods for Short-Term Prognosis
    Filipova-Petrakieva, Simona
    Dochev, Vencislav
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2022, 12 (02) : 8374 - 8381
  • [10] Novel autoregressive basis structure model for short-term forecasting of customer electricity demand
    Bennett, Christopher
    Stewart, Rodney
    Lu, Junwei
    2013 IEEE TENCON SPRING CONFERENCE, 2013, : 62 - 67