The exchange interaction between neighboring quantum dots: physics and applications in quantum information processing

被引:1
作者
Zhou, Zheng [1 ]
Li, Yixin [1 ]
Wu, Zhiyuan [1 ]
Ma, Xinping [1 ]
Fan, Shichang [1 ]
Huang, Shaoyun [1 ]
机构
[1] Peking Univ, Beijing Key Lab Quantum Devices, Sch Elect, Key Lab Phys & Chem Nanodevices, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
exchange interaction; quantum dots; tunnel coupling; quantum computation; OPTICAL LATTICES; HUBBARD-MODEL; SPIN; NARROW; COMPUTATION;
D O I
10.1088/1674-4926/24050043
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Electron spins confined in semiconductor quantum dots (QDs) are one of potential candidates for physical implementation of scalable quantum information processing technologies. Tunnel coupling based inter exchange interaction between QDs is crucial in achieving single-qubit manipulation, two-qubit gate, quantum communication and quantum simulation. This review first provides a theoretical perspective that surveys a general framework, including the Helter-London approach, the Hund-Mulliken approach, and the Hubbard model, to describe the inter exchange interactions between semiconductor quantum dots. An electrical method to control the inter exchange interaction in a realistic device is proposed as well. Then the significant achievements of inter exchange interaction in manipulating single qubits, achieving two-qubit gates, performing quantum communication and quantum simulation are reviewed. The last part is a summary of this review.
引用
收藏
页数:15
相关论文
共 106 条
  • [1] Quantifying error and leakage in an encoded Si/SiGe triple-dot qubit
    Andrews, Reed W.
    Jones, Cody
    Reed, Matthew D.
    Jones, Aaron M.
    Ha, Sieu D.
    Jura, Michael P.
    Kerckhoff, Joseph
    Levendorf, Mark
    Meenehan, Sean
    Merkel, Seth T.
    Smith, Aaron
    Sun, Bo
    Weinstein, Aaron J.
    Rakher, Matthew T.
    Ladd, Thaddeus D.
    Borselli, Matthew G.
    [J]. NATURE NANOTECHNOLOGY, 2019, 14 (08) : 747 - +
  • [2] Assa A., 1998, Berlin: Springer-Verlag, V1, P1
  • [3] Adiabatic Gate Teleportation
    Bacon, Dave
    Flammia, Steven T.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (12)
  • [4] HUBBARD-MODEL AND ANYON SUPERCONDUCTIVITY - A REVIEW
    BALACHANDRAN, AP
    ERCOLESSI, E
    MORANDI, G
    SRIVASTAVA, AM
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1990, 4 (14): : 2057 - 2196
  • [5] Quantum Dot Systems: a versatile platform for quantum simulations
    Barthelemy, Pierre
    Vandersypen, Lieven M. K.
    [J]. ANNALEN DER PHYSIK, 2013, 525 (10-11) : 808 - 826
  • [6] Competing mechanisms for singlet-triplet transition in artificial molecules
    Bellucci, D
    Rontani, M
    Troiani, F
    Goldoni, G
    Molinari, E
    [J]. PHYSICAL REVIEW B, 2004, 69 (20) : 201308 - 1
  • [7] Quantum information and computation
    Bennett, CH
    DiVincenzo, DP
    [J]. NATURE, 2000, 404 (6775) : 247 - 255
  • [8] Quantum Computing: Fundamentals, Implementations and Applications
    Bhat, Hilal Ahmad
    Khanday, Farooq Ahmad
    Kaushik, Brajesh Kumar
    Bashir, Faisal
    Shah, Khurshed Ahmad
    [J]. IEEE OPEN JOURNAL OF NANOTECHNOLOGY, 2022, 3 : 61 - 77
  • [9] Quantum communication through an unmodulated spin chain
    Bose, S
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (20)
  • [10] Schrieffer-Wolff transformation for quantum many-body systems
    Bravyi, Sergey
    DiVincenzo, David P.
    Loss, Daniel
    [J]. ANNALS OF PHYSICS, 2011, 326 (10) : 2793 - 2826