Quantum Circuit Ansatz: Patterns of Abstraction and Reuse of Quantum Algorithm Design

被引:0
作者
Guo, Xiaoyu [1 ]
Muta, Takahiro [1 ]
Zhao, Jianjun [1 ]
机构
[1] Kyushu Univ, Fukuoka, Japan
来源
2024 IEEE INTERNATIONAL CONFERENCE ON QUANTUM SOFTWARE, IEEE QSW 2024 | 2024年
关键词
Ansatz; quantum circuit; design pattern; quantum algorithm; EIGENSOLVER;
D O I
10.1109/QSW62656.2024.00021
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantum computing holds the potential to revolutionize various fields by efficiently tackling complex problems. At its core are quantum circuits, sequences of quantum gates manipulating quantum states. The selection of the right quantum circuit ansatz, which defines initial circuit structures and serves as the basis for optimization techniques, is crucial in quantum algorithm design. This paper presents a categorized catalog of quantum circuit ansatzes aimed at supporting quantum algorithm design and implementation. Each ansatz is described with details such as intent, motivation, applicability, circuit diagram, implementation, example, and see also. Practical examples are provided to illustrate their application in quantum algorithm design. The catalog aims to assist quantum algorithm designers by offering insights into the strengths and limitations of different ansatzes, thereby facilitating decision-making for specific tasks.
引用
收藏
页码:69 / 80
页数:12
相关论文
共 72 条
  • [1] A quantum computing view on unitary coupled cluster theory
    Anand, Abhinav
    Schleich, Philipp
    Alperin-Lea, Sumner
    Jensen, Phillip W. K.
    Sim, Sukin
    Diaz-Tinoco, Manuel
    Kottmann, Jakob S.
    Degroote, Matthias
    Izmaylov, Artur F.
    Aspuru-Guzik, Alan
    [J]. CHEMICAL SOCIETY REVIEWS, 2022, 51 (05) : 1659 - 1684
  • [2] [Anonymous], 2015, About Us
  • [3] Low-Depth Quantum Simulation of Materials
    Babbush, Ryan
    Wiebe, Nathan
    McClean, Jarrod
    McClain, James
    Neven, Hartmut
    Chan, Garnet Kin-Lic
    [J]. PHYSICAL REVIEW X, 2018, 8 (01):
  • [4] Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions
    Barkoutsos, Panagiotis Kl
    Gonthier, Jerome F.
    Sokolov, Igor
    Moll, Nikolaj
    Salis, Gian
    Fuhrer, Andreas
    Ganzhorn, Marc
    Egger, Daniel J.
    Troyer, Matthias
    Mezzacapo, Antonio
    Filipp, Stefan
    Tavernelli, Ivano
    [J]. PHYSICAL REVIEW A, 2018, 98 (02)
  • [5] Grover Mixers for QAOA: Shifting Complexity from Mixer Design to State Preparation
    Bartschi, Andreas
    Eidenbenz, Stephan
    [J]. IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE20), 2020, : 72 - 82
  • [6] Beisheim M., 2022, POLITICAL IMPACT SUS, P22, DOI [https://doi.org/10.1017/9781009082945.003, DOI 10.1017/9781009082945.003]
  • [7] Quantum machine learning
    Biamonte, Jacob
    Wittek, Peter
    Pancotti, Nicola
    Rebentrost, Patrick
    Wiebe, Nathan
    Lloyd, Seth
    [J]. NATURE, 2017, 549 (7671) : 195 - 202
  • [8] Buhler F., 2023, P 15 INT C PERV PATT, P30
  • [9] Variational quantum algorithms
    Cerezo, M.
    Arrasmith, Andrew
    Babbush, Ryan
    Benjamin, Simon C.
    Endo, Suguru
    Fujii, Keisuke
    McClean, Jarrod R.
    Mitarai, Kosuke
    Yuan, Xiao
    Cincio, Lukasz
    Coles, Patrick J.
    [J]. NATURE REVIEWS PHYSICS, 2021, 3 (09) : 625 - 644
  • [10] Augmenting QAOA Ansatz with Multiparameter Problem-Independent Layer
    Chalupnik, Michelle
    Melo, Hans
    Alexeev, Yuri
    Galda, Alexey
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, : 97 - 103