Analysis of bacterial transcriptome and epitranscriptome using nanopore direct RNA sequencing

被引:1
|
作者
Tan, Lu [2 ]
Guo, Zhihao [2 ]
Shao, Yanwen [2 ]
Ye, Lianwei [2 ]
Wang, Miaomiao [2 ]
Deng, Xin [3 ,5 ]
Chen, Sheng [4 ]
Li, Runsheng [1 ,2 ,5 ,6 ]
机构
[1] City Univ Hong Kong, Shenzhen Futian Res Inst, Dept Precis Diagnost & Therapeut Technol, Shenzhen 518057, Peoples R China
[2] City Univ Hong Kong, Jockey Club Coll Vet Med & Life Sci, Dept Infect Dis & Publ Hlth, Hong Kong, Peoples R China
[3] City Univ Hong Kong, Jockey Club Coll Vet Med & Life Sci, Dept Biomed Sci, Hong Kong, Peoples R China
[4] Hong Kong Polytech Univ, State Key Lab Chem Biol & Drug Discovery, Hong Kong, Peoples R China
[5] Hong Kong Polytech Univ, Dept Food Sci & Nutr, Hong Kong, Peoples R China
[6] City Univ Hong Kong, Tung Biomed Sci Ctr, Hong Kong, Peoples R China
关键词
RIBOSOMAL-RNA; GENE; N-6-METHYLADENOSINE; METHYLTRANSFERASE;
D O I
10.1093/nar/gkae601
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bacterial gene expression is a complex process involving extensive regulatory mechanisms. Along with growing interests in this field, Nanopore Direct RNA Sequencing (DRS) provides a promising platform for rapid and comprehensive characterization of bacterial RNA biology. However, the DRS of bacterial RNA is currently deficient in the yield of mRNA-mapping reads and has yet to be exploited for transcriptome-wide RNA modification mapping. Here, we showed that pre-processing of bacterial total RNA (size selection followed by ribosomal RNA depletion and polyadenylation) guaranteed high throughputs of sequencing data and considerably increased the amount of mRNA reads. This way, complex transcriptome architectures were reconstructed for Escherichia coli and Staphylococcus aureus and extended the boundaries of 225 known E. coli operons and 89 defined S. aureus operons. Utilizing unmodified in vitro-transcribed (IVT) RNA libraries as a negative control, several Nanopore-based computational tools globally detected putative modification sites in the E. coli and S. aureus transcriptomes. Combined with Next-Generation Sequencing-based N6-methyladenosine (m6A) detection methods, 75 high-confidence m6A candidates were identified in the E. coli protein-coding transcripts, while none were detected in S. aureus. Altogether, we demonstrated the potential of Nanopore DRS in systematic and convenient transcriptome and epitranscriptome analysis. Graphical Abstract
引用
收藏
页码:8746 / 8762
页数:17
相关论文
共 50 条
  • [1] Analysis of Transcriptome and Epitranscriptome in Plants Using PacBio Iso-Seq and Nanopore-Based Direct RNA Sequencing
    Zhao, Liangzhen
    Zhang, Hangxiao
    Kohnen, Markus V.
    Prasad, Kasavajhala V. S. K.
    Gu, Lianfeng
    Reddy, Anireddy S. N.
    FRONTIERS IN GENETICS, 2019, 10
  • [2] Epitranscriptome insights into Riccia fluitans L. (Marchantiophyta) aquatic transition using nanopore direct RNA sequencing
    Mazdziarz, Mateusz
    Krawczyk, Katarzyna
    Kurzynski, Mateusz
    Paukszto, Lukasz
    Szablinska-Piernik, Joanna
    Szczecinska, Monika
    Sulima, Pawel
    Sawicki, Jakub
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [3] NanoTrans: an integrated computational framework for comprehensive transcriptome analysis with nanopore direct RNA sequencing
    Yang, Ludong
    Zhang, Xinxin
    Wang, Fan
    Zhang, Li
    Li, Jing
    Yue, Jia-Xing
    JOURNAL OF GENETICS AND GENOMICS, 2024, 51 (11) : 1300 - 1309
  • [4] NanoTrans:an integrated computational framework for comprehensive transcriptome analysis with nanopore direct RNA sequencing
    Ludong Yang
    Xinxin Zhang
    Fan Wang
    Li Zhang
    Jing Li
    JiaXing Yue
    Journal of Genetics and Genomics, 2024, 51 (11) : 1300 - 1309
  • [5] Advances in nanopore direct RNA sequencing
    Miten Jain
    Robin Abu-Shumays
    Hugh E. Olsen
    Mark Akeson
    Nature Methods, 2022, 19 : 1160 - 1164
  • [6] Advances in nanopore direct RNA sequencing
    Jain, Miten
    Abu-Shumays, Robin
    Olsen, Hugh E.
    Akeson, Mark
    NATURE METHODS, 2022, 19 (10) : 1160 - 1164
  • [7] Analyzing viral epitranscriptomes using nanopore direct RNA sequencing
    Ari Hong
    Dongwan Kim
    V. Narry Kim
    Hyeshik Chang
    Journal of Microbiology, 2022, 60 : 867 - 876
  • [8] Analyzing viral epitranscriptomes using nanopore direct RNA sequencing
    Hong, Ari
    Kim, Dongwan
    Kim, V. Narry
    Chang, Hyeshik
    JOURNAL OF MICROBIOLOGY, 2022, 60 (09) : 867 - 876
  • [9] Exploring aberrant RNA modifications in glioma using direct RNA Nanopore sequencing
    Yamada, Keisuke
    Yu, Boyi
    Fujita, Takanori
    Takayanagi, Shunsaku
    Ueda, Hiroki
    Tanaka, Shota
    Saito, Nobuhito
    Aburatani, Hiroyuki
    Nagae, Genta
    CANCER SCIENCE, 2025, 116 : 1100 - 1100
  • [10] Nanopore native RNA sequencing of a human poly(A) transcriptome
    Rachael E. Workman
    Alison D. Tang
    Paul S. Tang
    Miten Jain
    John R. Tyson
    Roham Razaghi
    Philip C. Zuzarte
    Timothy Gilpatrick
    Alexander Payne
    Joshua Quick
    Norah Sadowski
    Nadine Holmes
    Jaqueline Goes de Jesus
    Karen L. Jones
    Cameron M. Soulette
    Terrance P. Snutch
    Nicholas Loman
    Benedict Paten
    Matthew Loose
    Jared T. Simpson
    Hugh E. Olsen
    Angela N. Brooks
    Mark Akeson
    Winston Timp
    Nature Methods, 2019, 16 : 1297 - 1305