High-throughput near-infrared spectroscopy analysis of nutritional composition in sweet potato stem tips

被引:6
作者
Tang, Chaochen [1 ,2 ]
Jiang, Bingzhi [1 ,2 ]
Ejaz, Irsa [3 ]
Ameen, Asif [4 ]
Zhang, Rong [1 ,2 ]
Mo, Xueying [1 ,2 ]
Li, Meng [1 ,5 ]
Wang, Zhangying [1 ,2 ]
机构
[1] Crops Res Inst, Guangdong Acad Agr Sci, 18 Jinying West Second St, Guangzhou 510640, Peoples R China
[2] Key Lab Crop Genet Improvement Guangdong Prov, Guangzhou 510640, Peoples R China
[3] Univ Gottingen, Dept Crop Sci, Div Agron, D-37075 Gottingen, Germany
[4] AARI, Agron Res Inst, Plant Physiol Sect, Faisalabad 38850, Pakistan
[5] Hunan Agr Univ, Coll Biosci & Biotechnol, Hunan Prov Key Lab Crop Germplasm Innovat & Utiliz, Changsha 410128, Peoples R China
关键词
Germplasm evaluation; Quality components; Chemometrics algorithms; Sample partitioning; Variable selection; ENZYMATIC SACCHARIFICATION; NIRS MODELS; QUALITY; PREDICTION; STARCH;
D O I
10.1016/j.microc.2024.111267
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Leaf-vegetable sweet potato is a nutritious food source, with stem tips as the harvest organ. However, the lack of rapid quantitative approaches for quality evaluation of stem tips largely limits the genetic improvement of leafvegetable sweet potato. This study aimed to establish a near-infrared spectroscopy (NIRS) methodology for the rapid analysis of both proximate (cellulose, crude protein, and soluble sugar) and functional (chlorogenic acid, total flavonoid content, and total phenolic content) components in the stem tips. Leveraging a dataset of 140 representative germplasm samples, we developed six robust NIRS models through the optimization of calibration sets and variable selection. These models exhibited exceptional accuracy, with high determination coefficients on calibration (R2C = 0.95-0.98), cross-validation (R2CV = 0.93-0.96), external validation (R2V = 0.91-0.95), and the ratio of prediction to deviation (RPD = 6.78-9.72). Overall, the NIRS models developed through this research facilitate high-throughput profiling of nutritional composition in stem tips, thereby enabling the swift identification of superior germplasm suited for leaf-vegetable sweet potato production.
引用
收藏
页数:9
相关论文
共 38 条
[2]  
Chen Yi-Hang, 2023, Acta Agronomica Sinica, V49, P1249, DOI 10.3724/SP.J.1006.2023.24122
[3]   Effect of Processing on Taste Quality and Health-Relevant Functionality of Sweet Potato Tips [J].
Cui Li ;
Liu Chun-quan ;
Li Da-jing ;
Song Jiang-feng .
AGRICULTURAL SCIENCES IN CHINA, 2011, 10 (03) :456-462
[4]   Development of NIRS models to predict composition of enzymatically processed sweetpotato [J].
Diaz, Joscelin T. ;
Veal, Matthew W. ;
Chinn, Mari S. .
INDUSTRIAL CROPS AND PRODUCTS, 2014, 59 :119-124
[5]   Sorghum Grains Grading for Food, Feed, and Fuel Using NIR Spectroscopy [J].
Ejaz, Irsa ;
He, Siyang ;
Li, Wei ;
Hu, Naiyue ;
Tang, Chaochen ;
Li, Songbo ;
Li, Meng ;
Diallo, Boubacar ;
Xie, Guanghui ;
Yu, Kang .
FRONTIERS IN PLANT SCIENCE, 2021, 12
[6]   Potential of near infrared spectroscopy for predicting the physicochemical properties on potato flesh [J].
Escuredo, Olga ;
Seijo-Rodriguez, Ana ;
Inmaculada Gonzalez-Martin, M. ;
Shantal Rodriguez-Flores, M. ;
Carmen Seijo, M. .
MICROCHEMICAL JOURNAL, 2018, 141 :451-457
[7]   Near infrared spectroscopy for prediction of antioxidant compounds in the honey [J].
Escuredo, Olga ;
Carmen Seijo, M. ;
Salvador, Javier ;
Inmaculada Gonzalez-Martin, M. .
FOOD CHEMISTRY, 2013, 141 (04) :3409-3414
[8]   Determination of total phenolic compounds in yerba mate (Ilex paraguariensis) combining near infrared spectroscopy (NIR) and multivariate analysis [J].
Frizon, Catia N. T. ;
Oliveira, Gabrieli A. ;
Perussello, Camila A. ;
Peralta-Zamora, Patricio G. ;
Camlofski, Ana M. O. ;
Rossa, Ueberson B. ;
Hoffmann-Ribani, Rosemary .
LWT-FOOD SCIENCE AND TECHNOLOGY, 2015, 60 (02) :795-801
[9]   A method for calibration and validation subset partitioning [J].
Galvao, RKH ;
Araujo, MCU ;
José, GE ;
Pontes, MJC ;
Silva, EC ;
Saldanha, TCB .
TALANTA, 2005, 67 (04) :736-740
[10]   Antioxidative properties of 34 green leafy vegetables [J].
Gunathilake, K. D. P. P. ;
Ranaweera, K. K. D. S. .
JOURNAL OF FUNCTIONAL FOODS, 2016, 26 :176-186