Laser-induced cavitation in liquid 4 He near the liquid-vapor critical point

被引:0
|
作者
Langley, Kenneth R. [1 ]
Alghamdi, Tariq [2 ]
Aguirre-Pablo, Andres A. [1 ]
Speirs, Nathan B. [1 ,3 ]
Thoroddsen, S. T. [1 ]
Taborek, Peter [4 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Div Phys Sci & Engn, Thuwal 239556900, Saudi Arabia
[2] Umm Al Qura Univ, Coll Engn & Architecture, Mech Engn Dept, Mecca 21955, Saudi Arabia
[3] Brigham Young Univ, Dept Mech Engn, Provo, UT 84602 USA
[4] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
来源
PHYSICAL REVIEW FLUIDS | 2024年 / 9卷 / 09期
关键词
BUBBLE DYNAMICS; BREAKDOWN; NUCLEATION; COLLAPSE; CO2;
D O I
10.1103/PhysRevFluids.9.L091601
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
High-speed videos in an optical cryostat, with frame rates up to 5x10(6) fps, are used to study the dynamics of laser-induced cavitation in helium near the critical point and in the supercritical region. The propagation of strong shock waves are observed in both regimes. The time dependence of the cavitation bubble radius as well as the acoustic pressure field outside the bubble are described by standard compressible flow models. In the temperature range 4K < T < 5.2K, a symmetric cloud of micron-scale bubbles are observed outside the main cavitation bubble as it approaches its maximum radius which is due to homogeneous nucleation and spinodal decomposition in the low-pressure fluid outside the bubble. Nucleation of secondary bubbles is also observed far below the critical point, but this requires large negative pressures that can be generated by shock waves that reflect from the primary bubble.
引用
收藏
页数:11
相关论文
共 40 条
  • [31] Laser-induced hard tissue ablation by assisted with a liquid film on target tissue surface
    Zhang, Xianzeng
    Zhao, Haibin
    Zhan, Zhenlin
    Ye, Qing
    Xie, Shusen
    OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS IV, 2010, 7845
  • [32] Hybrid analytical/numerical modeling of nanosecond laser-induced micro-jets generated by liquid confining devices
    Orimi, Hamid Ebrahimi
    Narayanswamy, Sivakumar
    Boutopoulos, Christos
    JOURNAL OF FLUIDS AND STRUCTURES, 2020, 98 (98)
  • [33] Experimental Study on Near-Wall Laser-Induced Cavitation Bubble Micro-Dimple Formation on 7050 Aluminum Alloy
    Cao, Yupeng
    Hu, Ranran
    Shi, Weidong
    Zhou, Rui
    WATER, 2024, 16 (10)
  • [34] Real-space laser-induced fluorescence imaging applied to gas-liquid interfacial scattering
    Bianchini, Robert H.
    Roman, Maksymilian J.
    Costen, Matthew L.
    McKendrick, Kenneth G.
    JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (05)
  • [35] Time-resolved dynamics of laser-induced micro-jets from thin liquid films
    Brown, Matthew S.
    Kattamis, Nicholas T.
    Arnold, Craig B.
    MICROFLUIDICS AND NANOFLUIDICS, 2011, 11 (02) : 199 - 207
  • [36] Nonphotochemical laser-induced nucleation of nematic phase and alignment of nematic director from a supercooled thermotropic liquid crystal
    Sun, Xiaoying
    Garetz, Bruce A.
    Moreira, Michele F.
    Palffy-Muhoray, Peter
    PHYSICAL REVIEW E, 2009, 79 (02):
  • [37] Uncertainty measurement of two color two dye laser-induced fluorescence thermometry and application thereof to superheated liquid jet
    Lee, Hyunchang
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025, 244
  • [38] Carbon detection in solid and liquid steel samples using ultraviolet long-short double pulse laser-induced breakdown spectroscopy
    Cui, Minchao
    Deguchi, Yoshihiro
    Yao, Changfeng
    Wang, Zhenzhen
    Tanaka, Seiya
    Zhang, Dinghua
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2020, 167
  • [39] Flexible thermistors: pulsed laser-induced liquid-phase sintering of spinel Mn-Co-Ni oxide films on polyethylene terephthalate sheets
    Nakajima, Tomohiko
    Tsuchiya, Tetsuo
    JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (15) : 3809 - 3816
  • [40] Cavitation Bubbles Generated by Vibrating Quartz Tuning Fork in Liquid 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^4$$\end{document}He Close to the λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-Transition
    Daniel Duda
    Patrik Švančara
    Marco La Mantia
    Miloš Rotter
    David Schmoranzer
    Oleg Kolosov
    Ladislav Skrbek
    Journal of Low Temperature Physics, 2017, 187 (5-6) : 376 - 382