BAFusion: Bidirectional Attention Fusion for 3D Object Detection Based on LiDAR and Camera

被引:4
|
作者
Liu, Min [1 ]
Jia, Yuanjun [2 ]
Lyu, Youhao [1 ]
Dong, Qi [2 ]
Yang, Yanyu [2 ]
机构
[1] Univ Sci & Technol China, Inst Adv Technol, Hefei 230088, Peoples R China
[2] China Acad Elect & Informat Technol, Beijing 100041, Peoples R China
关键词
3D object detection; LiDAR-camera fusion; cross attention;
D O I
10.3390/s24144718
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
3D object detection is a challenging and promising task for autonomous driving and robotics, benefiting significantly from multi-sensor fusion, such as LiDAR and cameras. Conventional methods for sensor fusion rely on a projection matrix to align the features from LiDAR and cameras. However, these methods often suffer from inadequate flexibility and robustness, leading to lower alignment accuracy under complex environmental conditions. Addressing these challenges, in this paper, we propose a novel Bidirectional Attention Fusion module, named BAFusion, which effectively fuses the information from LiDAR and cameras using cross-attention. Unlike the conventional methods, our BAFusion module can adaptively learn the cross-modal attention weights, making the approach more flexible and robust. Moreover, drawing inspiration from advanced attention optimization techniques in 2D vision, we developed the Cross Focused Linear Attention Fusion Layer (CFLAF Layer) and integrated it into our BAFusion pipeline. This layer optimizes the computational complexity of attention mechanisms and facilitates advanced interactions between image and point cloud data, showcasing a novel approach to addressing the challenges of cross-modal attention calculations. We evaluated our method on the KITTI dataset using various baseline networks, such as PointPillars, SECOND, and Part-A2, and demonstrated consistent improvements in 3D object detection performance over these baselines, especially for smaller objects like cyclists and pedestrians. Our approach achieves competitive results on the KITTI benchmark.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Snow-CLOCs: Camera-LiDAR Object Candidate Fusion for 3D Object Detection in Snowy Conditions
    Fan, Xiangsuo
    Xiao, Dachuan
    Li, Qi
    Gong, Rui
    SENSORS, 2024, 24 (13)
  • [32] Density Awareness and Neighborhood Attention for LiDAR-Based 3D Object Detection
    Qian, Hanxiang
    Wu, Peng
    Sun, Xiaoyong
    Guo, Xiaojun
    Su, Shaojing
    PHOTONICS, 2022, 9 (11)
  • [33] Improved AVOD Model Based on a Bidirectional Fusion Mechanism for 3D Object Detection
    Tao, Zhonghan
    Wan, Yi
    Hou, Jiarui
    Wu, Weili
    Zhang, Shilei
    PROCEEDINGS OF THE 2024 3RD INTERNATIONAL SYMPOSIUM ON INTELLIGENT UNMANNED SYSTEMS AND ARTIFICIAL INTELLIGENCE, SIUSAI 2024, 2024, : 309 - 312
  • [34] 3D Object Detection Based on LiDAR Data
    Sahba, Ramin
    Sahba, Amin
    Jamshidi, Mo
    Rad, Paul
    2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2019, : 511 - 514
  • [35] LXL: LiDAR Excluded Lean 3D Object Detection With 4D Imaging Radar and Camera Fusion
    Xiong, Weiyi
    Liu, Jianan
    Huang, Tao
    Han, Qing-Long
    Xia, Yuxuan
    Zhu, Bing
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01): : 79 - 92
  • [36] LXL: LiDAR Excluded Lean 3D Object Detection with 4D Imaging Radar and Camera Fusion
    Xiong, Weiyi
    Liu, Jianan
    Huang, Tao
    Han, Qing-Long
    Xia, Yuxuan
    Zhu, Bing
    2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, : 3142 - 3142
  • [37] LiDAR-camera-system-based unsupervised and weakly supervised 3D object detection
    Wang, Haosen
    Chen, Tiankai
    Ji, Xiaohang
    Qian, Feng
    Ma, Yue
    Wang, Shifeng
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2023, 40 (10) : 1849 - 1860
  • [38] CenterFusion: Center-based Radar and Camera Fusion for 3D Object Detection
    Nabati, Ramin
    Qi, Hairong
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 1526 - 1535
  • [39] Multi-Layer Fusion 3D Object Detection via Lidar Point Cloud and Camera Image
    Guo, Yuhao
    Hu, Hui
    APPLIED SCIENCES-BASEL, 2024, 14 (04):
  • [40] MSGFusion: Muti-scale Semantic Guided LiDAR-Camera Fusion for 3D Object Detection
    Zhu, Huming
    Xue, Yiyu
    Cheng, Xinyue
    Hou, Biao
    2024 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN 2024, 2024,