Qualitative Analysis of Impulsive Stochastic Hilfer Fractional Differential Equation

被引:0
作者
Khalil, Hamza [1 ]
Zada, Akbar [1 ]
Moussa, Sana Ben [2 ]
Popa, Ioan-Lucian [3 ,4 ]
Kallekh, Afef [5 ]
机构
[1] Univ Peshawar, Dept Math, Peshawar, Khyber Pakhtunk, Pakistan
[2] King Khalid Univ, Fac Sci, Dept Chem, Abha 61413, Saudi Arabia
[3] 1 Decembrie 1918 Univ Alba Iulia, Dept Comp Math & Elect, Alba Iulia 510009, Romania
[4] Transilvania Univ Brasov, Fac Math & Comp Sci, Iuliu Maniu St 50, Brasov 500091, Romania
[5] King Khalid Univ, Fac Sci, Dept Math, Abha 61413, Saudi Arabia
关键词
Neutral; Existence and uniqueness; Hilfer derivative; Stochastic differential equation; Ulam's stability; EXISTENCE; STABILITY;
D O I
10.1007/s12346-024-01149-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proves the qualitative properties like existence, uniqueness and Ulam-Hyers-Rassias stability for a solution of a nonlinear impulsive Hilfer fractional stochastic differential equation with non-instantaneous impulses. The Banach fixed point theorem and Cauchy inequality are utilized for obtaining our results. The Ulam-Hyers-Rassias stability is presented under specific assumptions. To verify the theoretical results an example is presented at the end.
引用
收藏
页数:21
相关论文
共 34 条
[21]   Analysis of Neutral Stochastic Fractional Differential Equations Involving Riemann-Liouville Fractional Derivative with Retarded and Advanced Arguments [J].
Saifullah, Shahid ;
Shahid, Sumbel ;
Zada, Akbar .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (01)
[22]  
Salim A., 2024, Arab Journal of Basic and Applied Sciences, V31, P225
[23]  
Samko S. G., 1993, Fractional Integrals and Derivative. Theory and Applications
[24]   On Hyers-Ulam Mittag-Leffler stability of discrete fractional Duffing equation with application on inverted pendulum [J].
Selvam, A. G. M. ;
Baleanu, D. ;
Alzabut, J. ;
Vignesh, D. ;
Abbas, S. .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[25]   Existence and Stability Results for Nonlinear Implicit Random Fractional Integro-Differential Equations [J].
Shahid, Sumbel ;
Saifullah, Shahid ;
Riaz, Usman ;
Zada, Akbar ;
Ben Moussa, Sana .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (02)
[26]   Asymptotic stability of fractional order (1,2] stochastic delay differential equations in Banach spaces [J].
Singh, Ajeet ;
Shukla, Anurag ;
Vijayakumar, V. ;
Udhayakumar, R. .
CHAOS SOLITONS & FRACTALS, 2021, 150
[27]   A note on the mild solutions of Hilfer impulsive fractional differential equations [J].
Sousa, J. Vanterler da C. ;
Oliveira, D. S. ;
de Oliveira, E. Capelas .
CHAOS SOLITONS & FRACTALS, 2021, 147
[28]   Existence of mild solutions to Hilfer fractional evolution equations in Banach space [J].
Sousa, J. Vanterler da C. ;
Jarad, Fahd ;
Abdeljawad, Thabet .
ANNALS OF FUNCTIONAL ANALYSIS, 2020, 12 (01)
[29]   Stability of ψ-Hilfer impulsive fractional differential equations [J].
Sousa, J. Vanterler da C. ;
Kucche, Kishor D. ;
Capelas de Oliveira, E. .
APPLIED MATHEMATICS LETTERS, 2019, 88 :73-80
[30]  
Stirzaker D., 2001, Stochastic Processes and Their Applications