A deep learning-based global tropical cyclogenesis prediction model and its interpretability analysis

被引:0
|
作者
Mu, Bin [1 ]
Wang, Xin [1 ]
Yuan, Shijin [1 ]
Chen, Yuxuan [1 ]
Wang, Guansong [1 ]
Qin, Bo [2 ,3 ]
Zhou, Guanbo [4 ,5 ]
机构
[1] Tongji Univ, Sch Software Engn, Shanghai 201804, Peoples R China
[2] Fudan Univ, Dept Atmospher & Ocean Sci, Shanghai 200438, Peoples R China
[3] Fudan Univ, Inst Atmospher Sci, Shanghai 200438, Peoples R China
[4] Natl Meteorol Ctr, Beijing 100081, Peoples R China
[5] China Meteorol Adm, Shanghai Typhoon Inst, Shanghai 200030, Peoples R China
基金
中国国家自然科学基金;
关键词
Tropical cyclogenesis prediction; Deep learning; Feature fusion; Interpretability; Causal inference; SEA-SURFACE TEMPERATURE; NONDEVELOPING DISTURBANCES; CYCLONES; GENESIS; INTENSITY; WAVE;
D O I
10.1007/s11430-023-1383-6
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Tropical cloud clusters (TCCs) can potentially develop into tropical cyclones (TCs), leading to significant casualties and economic losses. Accurate prediction of tropical cyclogenesis (TCG) is crucial for early warnings. Most traditional deep learning methods applied to TCG prediction rely on predictors from a single time point, neglect the ocean-atmosphere interactions, and exhibit low model interpretability. This study proposes the Tropical Cyclogenesis Prediction-Net (TCGP-Net) based on the Swin Transformer, which leverages convolutional operations and attention mechanisms to encode spatiotemporal features and capture the temporal evolution of predictors. This model incorporates the coupled ocean-atmosphere interactions, including multiple variables such as sea surface temperature. Additionally, causal inference and integrated gradients are employed to validate the effectiveness of the predictors and provide an interpretability analysis of the model's decision-making process. The model is trained using GridSat satellite data and ERA5 reanalysis datasets. Experimental results demonstrate that TCGP-Net achieves high accuracy and stability, with a detection rate of 97.9% and a false alarm rate of 2.2% for predicting TCG 24 hours in advance, significantly outperforming existing models. This indicates that TCGP-Net is a reliable tool for tropical cyclogenesis prediction.
引用
收藏
页码:3671 / 3695
页数:25
相关论文
共 50 条
  • [1] A Deep Learning-Based In Situ Analysis Framework for Tropical Cyclogenesis Prediction
    Mukherjee, Abir
    Malakar, Preeti
    2022 IEEE 29TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING, DATA, AND ANALYTICS, HIPC, 2022, : 166 - 175
  • [2] Prediction of Tropical Cyclogenesis Based on Machine Learning Methods and Its SHAP Interpretation
    Loi, Chi Lok
    Wu, Chun-Chieh
    Liang, Yu-Chiao
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2024, 16 (03)
  • [3] Deep learning-based prediction and interpretability of physical phenomena for metaporous materials
    Lee, Soo Young
    Lee, Jihun
    Lee, Joong Seok
    Lee, Seungchul
    MATERIALS TODAY PHYSICS, 2023, 30
  • [4] Interpretability of machine learning-based prediction models in healthcare
    Stiglic, Gregor
    Kocbek, Primoz
    Fijacko, Nino
    Zitnik, Marinka
    Verbert, Katrien
    Cilar, Leona
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (05)
  • [5] A Study of the Interpretability of Fundus Analysis with Deep Learning-Based Approaches for Glaucoma Assessment
    Guo, Jing-Ming
    Hsiao, Yu-Ting
    Hsu, Wei-Wen
    Seshathiri, Sankarasrinivasan
    Lee, Jiann-Der
    Luo, Yan-Min
    Liu, Peizhong
    ELECTRONICS, 2023, 12 (09)
  • [6] Deep Semisupervised Multitask Learning Model and Its Interpretability for Survival Analysis
    Chi, Shengqiang
    Tian, Yu
    Wang, Feng
    Wang, Yu
    Chen, Ming
    Li, Jingsong
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (08) : 3185 - 3196
  • [7] Deep Learning-Based Model for Financial Distress Prediction
    Elhoseny, Mohamed
    Metawa, Noura
    Sztano, Gabor
    El-hasnony, Ibrahim M.
    ANNALS OF OPERATIONS RESEARCH, 2025, 345 (2-3) : 885 - 907
  • [8] Longitudinal interpretability of deep learning based breast cancer risk prediction
    Klanecek, Zan
    Wang, Yao-Kuan
    Wagner, Tobias
    Cockmartin, Lesley
    Marshall, Nicholas
    Schott, Brayden
    Deatsch, Ali
    Studen, Andrej
    Jarm, Katja
    Krajc, Mateja
    Vrhovec, Milos
    Bosmans, Hilde
    Jeraj, Robert
    PHYSICS IN MEDICINE AND BIOLOGY, 2025, 70 (01):
  • [9] On the interpretability of machine learning-based model for predicting hypertension
    Radwa Elshawi
    Mouaz H. Al-Mallah
    Sherif Sakr
    BMC Medical Informatics and Decision Making, 19
  • [10] On the interpretability of machine learning-based model for predicting hypertension
    Elshawi, Radwa
    Al-Mallah, Mouaz H.
    Sakr, Sherif
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2019, 19 (1)