Water transport across the membrane of a direct toluene electro-hydrogenation electrolyzer: Experiments and modelling

被引:2
|
作者
Atienza-Marquez, Antonio [1 ,2 ]
Oi, Shota [3 ]
Araki, Takuto [4 ]
Mitsushima, Shigenori [2 ,5 ]
机构
[1] Univ Malaga, Energy Res Grp GEUMA, C Doctor Ortiz Ramos s-n, Malaga 29071, Spain
[2] Yokohama Natl Univ, Inst Adv Sci, 79-5 Tokiwadai,Hodogaya Ku, Yokohama 2408501, Japan
[3] Yokohama Natl Univ, Grad Sch Engn Sci, 79-5 Tokiwadai,Hodogaya Ku, Yokohama 2408501, Japan
[4] Yokohama Natl Univ, Fac Engn, Div Syst Res, 79-5 Tokiwadai,Hodogaya Ku, Yokohama, Kanagawa 2408501, Japan
[5] Yokohama Natl Univ, Green Hydrogen Res Ctr, 79-5 Hodogaya Ku, Yokohama 2408501, Japan
基金
奥地利科学基金会;
关键词
Water mass transport; Hydrogen energy technologies; Toluene/MCH organic hydride; Electrolyzer; Polymeric electrolyte membrane; Electro-osmosis; FUEL-CELL; NAFION MEMBRANE; DIFFUSION-COEFFICIENTS; DRAG COEFFICIENTS; FLOW-FIELD; ACID; EXCHANGE; CONDUCTIVITY; PERMEATION; DESORPTION;
D O I
10.1016/j.energy.2024.132186
中图分类号
O414.1 [热力学];
学科分类号
摘要
Toluene/methylcyclohexane is a promising liquid organic hydride for hydrogen storage and transport under ambient conditions. Direct toluene electro-hydrogenation electrolyzers, utilizing proton exchange membrane technology, offer benefits in reducing the reversible decomposition voltage and eliminating theoretical heat losses associated with conventional hydrogenation methods. Nevertheless, water transport across the membrane can inhibit the supply of toluene to reaction sites at the cathode. This study investigates water transport across the NafionTM 117 membrane of an in-house electrolyzer cell, employing sulfuric acid and toluene solutions as the anode and cathode reactant, respectively, and operating at current densities from 0.1 to 0.8 A/cm2. The experiments show that the cathode toluene concentration has a negligible effect on drag water, while water flux increases with electric current and decreases with higher anode sulfuric acid concentrations. The modelling approach assumes electro-osmosis and diffusion mechanisms govern water transport. Simulations predict a linear decrease in the electro-osmotic drag coefficient from 2.3 to 1.6 as the sulfuric acid concentration rises from 0.1 to 1.5 mol/L, while the back diffusion flux increases linearly up to 2 mg/(min & sdot;cm2). These findings closely align with experimental data and previous literature, despite the high complexity of water transport in polymer electrolyte membranes.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Direct Toluene Electro-hydrogenation Using Anion Exchange Membrane Electrolyzer
    Shinohara, Rio
    Nagasawa, Kensaku
    Kuroda, Yoshiyuki
    Ikegami, Kaoru
    Mitsushima, Shigenori
    ELECTROCHEMISTRY, 2024, 92 (09)
  • [2] Electrolyzer Technologies in Toluene Direct Electro-hydrogenation for Methylcyclohexane Synthesis
    Nagasawa, Kensaku
    Mitsushima, Shigenori
    JOURNAL OF THE JAPAN PETROLEUM INSTITUTE, 2024, 67 (03) : 97 - 104
  • [3] Visualization of dragged water and generated hydrogen bubbles in a direct toluene electro-hydrogenation electrolyzer
    Shigemasa, Kaito
    Atienza-Marquez, Antonio
    Inoue, Kaisei
    Jang, Sunpil
    Reyna Pena, Fatima Isabella
    Araki, Takuto
    Terao, Takuma
    Nagasawa, Kensaku
    Mitsushima, Shigenori
    JOURNAL OF POWER SOURCES, 2023, 554
  • [4] Hydrogen bubble transport of a direct toluene electro-hydrogenation electrolyzer visualized by synchrotron X-ray CT
    Reyna-Pena, Fatima I.
    Atienza-Marquez, Antonio
    Jang, Sunpil
    Shigemasa, Kaito
    Shiono, Ryuhei
    Nagasawa, Kensaku
    Araki, Takuto
    Mitsushima, Shigenori
    RENEWABLE ENERGY, 2025, 240
  • [5] In situ X-ray CT visualization of hydrogen bubbles inside the porous transport layer of a direct toluene electro-hydrogenation electrolyzer
    Reyna-Pena, Fatima I.
    Atienza-Marquez, Antonio
    Jang, Sunpil
    Shiono, Ryuhei
    Shigemasa, Kaito
    Araki, Takuto
    Nagasawa, Kensaku
    Mitsushima, Shigenori
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 50 : 787 - 798
  • [6] Palladium membrane electro-hydrogenation
    Ma, Yining
    Shi, Run
    Zhang, Tierui
    INNOVATION, 2022, 3 (06):
  • [7] Chemical-hydrogenation functionalized flow-field in toluene direct electro-hydrogenation electrolyzer for energy-carrier synthesis system
    Nagasawa, Kensaku
    Sawaguchi, Yuki
    Kato, Akihiro
    Nishiki, Yoshinori
    Mitsushima, Shigenori
    Electrochemistry, 2018, 86 (06): : 339 - 344
  • [8] Chemical-hydrogenation Functionalized Flow-Field in Toluene Direct Electro-hydrogenation Electrolyzer for Energy-carrier Synthesis System
    Nagasawa, Kensaku
    Sawaguchi, Yuki
    Kato, Akihiro
    Nishiki, Yoshinori
    Mitsushima, Shigenori
    ELECTROCHEMISTRY, 2018, 86 (06) : 339 - 344
  • [9] Toluene permeation through solid polymer electrolyte during toluene direct electro-hydrogenation for energy carrier synthesis
    Nagasawa, Kensaku
    Tanimoto, Keisuke
    Koike, Junpei
    Ikegami, Kaoru
    Mitsushima, Shigenori
    JOURNAL OF POWER SOURCES, 2019, 439
  • [10] Water transport across the peritoneal membrane
    Devuyst, Olivier
    Rippe, Bengt
    KIDNEY INTERNATIONAL, 2014, 85 (04) : 750 - 758