Machine learning-driven QSAR models for predicting the cytotoxicity of five common microplastics

被引:9
作者
Liu, Chengzhi [1 ]
Zong, Cheng [1 ]
Chen, Shuang [1 ]
Chu, Jiangliang [1 ]
Yang, Yifan [1 ]
Pan, Yong [1 ]
Yuan, Beilei [1 ]
Zhang, Huazhong [2 ,3 ]
机构
[1] Nanjing Tech Univ, Coll Safety Sci & Engn, Nanjing 210009, Jiangsu, Peoples R China
[2] Nanjing Med Univ, Dept Emergency Med, Affiliated Hosp 1, Nanjing 210029, Jiangsu, Peoples R China
[3] Nanjing Med Univ, Inst Poisoning, Nanjing 211100, Peoples R China
基金
中国国家自然科学基金;
关键词
Microplastics; Cytotoxicity; Machine learning; QSAR; VALIDATION; BEWARE;
D O I
10.1016/j.tox.2024.153918
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
In the field of microplastics (MPs) toxicity prediction, machine learning (ML) computer simulation techniques are showing great potential. In this study, six ML algorithms were utilized to predict the toxicity of MPs on BEAS2B cells based on quantitative structure-activity relationship (QSAR) models. Comparing the models of different algorithms, the extreme gradient boosting model showed the best fit and prediction performance (R2tra = 0.9876, R2 test= 0.9286). Additionally, Williams plot analysis showed that the six models developed were able to predict stably within their applicability domain, with few outliers. Finally, the three feature importance methods-Embedded Feature Importance (EFI), Recursive Feature Elimination (RFE), and SHapley Additive exPlanations (SHAP)-consistently identified particle size as the most critical feature affecting toxicity prediction. The proposed QSAR model can be utilized for preliminary environmental exposure assessments of MPs and to better understand the associated health risks.
引用
收藏
页数:9
相关论文
共 68 条
[1]   Beware of R2: Simple, Unambiguous Assessment of the Prediction Accuracy of QSAR and QSPR Models [J].
Alexander, D. L. J. ;
Tropsha, A. ;
Winkler, David A. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2015, 55 (07) :1316-1322
[2]   Continental microplastics: Presence, features, and environmental transport pathways [J].
Alfonso, Maria B. ;
Arias, Andres H. ;
Ronda, Ana C. ;
Piccolo, Maria C. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 799
[3]   Presence of airborne microplastics in human lung tissue [J].
Amato-Lourenco, Luis Fernando ;
Carvalho-Oliveira, Regiani ;
Ribeiro Junior, Gabriel ;
Galvao, Luciana dos Santos ;
Ando, Romulo Augusto ;
Mauad, Thais .
JOURNAL OF HAZARDOUS MATERIALS, 2021, 416
[4]   Machine Learning to Predict the Adsorption Capacity of Microplastics [J].
Astray, Gonzalo ;
Soria-Lopez, Anton ;
Barreiro, Enrique ;
Mejuto, Juan Carlos ;
Cid-Samamed, Antonio .
NANOMATERIALS, 2023, 13 (06)
[5]   Accumulation and fragmentation of plastic debris in global environments [J].
Barnes, David K. A. ;
Galgani, Francois ;
Thompson, Richard C. ;
Barlaz, Morton .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2009, 364 (1526) :1985-1998
[6]   Combinatorial Nano-Bio Interfaces [J].
Cai, Pingqiang ;
Zhang, Xiaoqian ;
Wang, Ming ;
Wu, Yun-Long ;
Chen, Xiaodong .
ACS NANO, 2018, 12 (06) :5078-5084
[7]   Computer-aided nanotoxicology: risk assessment of metal oxide nanoparticles via nano-QSAR [J].
Cao, Jiakai ;
Pan, Yong ;
Jiang, Yanting ;
Qi, Ronghua ;
Yuan, Beilei ;
Jia, Zhenhua ;
Jiang, Juncheng ;
Wang, Qingsheng .
GREEN CHEMISTRY, 2020, 22 (11) :3512-3521
[8]   Enhanced recursive feature elimination [J].
Chen, Xue-Wen ;
Jeong, Jong Cheol .
ICMLA 2007: SIXTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS, 2007, :429-435
[9]   QSAR Modeling: Where Have You Been? Where Are You Going To? [J].
Cherkasov, Artem ;
Muratov, Eugene N. ;
Fourches, Denis ;
Varnek, Alexandre ;
Baskin, Igor I. ;
Cronin, Mark ;
Dearden, John ;
Gramatica, Paola ;
Martin, Yvonne C. ;
Todeschini, Roberto ;
Consonni, Viviana ;
Kuz'min, Victor E. ;
Cramer, Richard ;
Benigni, Romualdo ;
Yang, Chihae ;
Rathman, James ;
Terfloth, Lothar ;
Gasteiger, Johann ;
Richard, Ann ;
Tropsha, Alexander .
JOURNAL OF MEDICINAL CHEMISTRY, 2014, 57 (12) :4977-5010
[10]   Real External Predictivity of QSAR Models. Part 2. New Intercomparable Thresholds for Different Validation Criteria and the Need for Scatter Plot Inspection [J].
Chirico, Nicola ;
Gramatica, Paola .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2012, 52 (08) :2044-2058