On Trudinger-type inequalities in Musielak-Orlicz-Morrey spaces of an integral form over metric measure spaces

被引:0
作者
Ohno, Takao [1 ]
Shimomura, Tetsu [2 ]
机构
[1] Oita Univ, Fac Educ, Dannoharu, Oita 8701192, Japan
[2] Hiroshima Univ, Grad Sch Humanities & Social Sci, Dept Math, Higashihiroshima 7398524, Japan
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2024年 / 43卷 / 3-4期
关键词
Trudinger's inequality; Riesz potentials; Musielak-Orlicz-Morrey spaces; metric measure space; double-phase functions; Poincare inequality; RIESZ-POTENTIALS; SOBOLEVS INEQUALITY; EMBEDDINGS; BOUNDEDNESS;
D O I
10.4171/ZAA/1766
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish Trudinger-type inequalities for variable Riesz potentials J(alpha(center dot),tau) f of functions f in Musielak-Orlicz-Morrey spaces of an integral form over metric measure spaces X . As an application and example, we give Trudinger's inequality for double-phase functionals with variable exponents. Finally, we prove the result for Sobolev functions satisfying a Poincare inequality in X .
引用
收藏
页码:377 / 400
页数:24
相关论文
共 43 条
[1]   Gradient estimates for Orlicz double phase problems with variable exponents [J].
Baasandorja, Sumiya ;
Byunb, Sun-Sig ;
Lee, Ho-Sik .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 221
[2]   Regularity for general functionals with double phase [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
[3]   Harnack inequalities for double phase functionals [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 :206-222
[4]  
BREZIS H, 1980, COMMUN PART DIFF EQ, V5, P773
[5]   Regularity for Double Phase Variational Problems [J].
Colombo, Maria ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (02) :443-496
[6]  
EDMUNDS DE, 1995, STUD MATH, V115, P151
[7]   Sobolev inequalities of exponential type [J].
Edmunds, DE ;
Hurri-Syrjänen, R .
ISRAEL JOURNAL OF MATHEMATICS, 2001, 123 (1) :61-92
[8]   Integrability of maximal functions and Riesz potentials in Orlicz spaces of variable exponent [J].
Futamura, Toshihide ;
Mizuta, Yoshihiro ;
Shimomura, Tetsu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 366 (02) :391-417
[9]   A non-doubling Trudinger inequality [J].
Gogatishvili, A ;
Koskela, P .
STUDIA MATHEMATICA, 2005, 170 (02) :113-119
[10]  
Hajlasz P, 1996, POTENTIAL ANAL, V5, P403