Genuinely nonlocal sets without entanglement in multipartite systems

被引:1
作者
Lu, Ying-Ying [1 ]
Cao, Hai-Qing [1 ]
Zuo, Hui-Juan [1 ,2 ,3 ]
Fei, Shao-Ming [4 ]
机构
[1] Hebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Peoples R China
[2] Hebei Key Lab Computat Math & Applicat, Shijiazhuang 050024, Peoples R China
[3] Hebei Int Joint Res Ctr Math & Interdisciplinary S, Shijiazhuang 050024, Peoples R China
[4] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
关键词
QUANTUM NONLOCALITY;
D O I
10.1103/PhysRevA.110.022427
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A set of multipartite orthogonal states is genuinely nonlocal if it is locally indistinguishable in every bipartition of the subsystems. If the set is locally reducible, we say it has genuine nonlocality of type I. Otherwise, we say it has genuine nonlocality of type II. Due to the complexity of the problem, the construction of genuinely nonlocal sets in general multipartite systems has not been completely solved so far. In this paper, we first provide a nonlocal set of product states in bipartite systems. We obtain a genuinely nonlocal set of type I without entanglement in general n-partite systems circle times ni=1CCdi[3 (d1 - 1) d2 <middle dot> <middle dot> <middle dot> dn, n 3]. Then we present two constructions with genuine nonlocality of type II in CCd1 circle times CCd2 circle times CCd3 (3 d1 d2 d3) and circle times ni=1CCdi (3 d1 d2 <middle dot> <middle dot> <middle dot> dn, n 4). Our results further positively answer the open problem that there does exist a genuinely nonlocal set of type II in multipartite systems [M. S. Li, Y. L. Wang, F. Shi, and M. H. Yung, J. Phys. A: Math. Theor. 54, 445301 (2021)] and highlight its related applications in quantum information processing.
引用
收藏
页数:8
相关论文
empty
未找到相关数据