Predicting Time to Dialysis and Unplanned Dialysis Start Using Machine Learning Models

被引:0
|
作者
Shukla, Mahesh [1 ,2 ]
Garrett, Brendan C. [1 ,2 ]
Azari, Ali [1 ,2 ]
Kipping, Emily [1 ,2 ]
Culleton, Bruce F. [1 ,2 ]
机构
[1] CVS Hlth Corp, Woonsocket, RI USA
[2] CVS Kidney Care, Woonsocket, RI USA
来源
关键词
D O I
暂无
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
PO0816
引用
收藏
页码:284 / 284
页数:1
相关论文
共 50 条
  • [31] A BUDGET IMPACT ANALYSIS OF INCREASING PERITONEAL DIALYSIS (PD) IN ADULTS EXPERIENCING UNPLANNED START DIALISYS (URGENT START) IN BRAZIL
    Tannus, G.
    Sansone, D.
    Farah, D.
    Ramirez, M. G.
    Fonseca, M.
    VALUE IN HEALTH, 2017, 20 (09) : A577 - A577
  • [32] HYPERPHOSPHATEMIA IS ASSOCIATED WITH TIME TO START OF DIALYSIS BUT NOT WITH RENAL FUNCTION DECLINE IN INCIDENT PRE-DIALYSIS PATIENTS
    Fu, Edouard
    Vervloet, Marc
    Voskamp, Pauline
    van Diepen, Merel
    Dekker, Friedo
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2018, 33 : 167 - 167
  • [33] WHEN IS THE IDEAL TIME TO START A HOME BASED DIALYSIS THERAPY?
    Cooper, B. A.
    Wong, M. G.
    Branley, P.
    Bulfone, L.
    Collins, J. F.
    Craig, J. C.
    Fraenkel, M. B.
    Harris, A.
    Kesselhut, J.
    Li, J. J.
    Luxton, G.
    Pilmore, A.
    Tiller, D. J.
    Johnson, D. W.
    Mcdonald, S.
    Harris, D. C.
    Pollock, C. A.
    NEPHROLOGY, 2012, 17 : 49 - 49
  • [34] Urgent-start peritoneal dialysis: is it ready for prime time?
    Tunbridge, Matthew
    Cho, Yeoungjee
    Johnson, David W.
    CURRENT OPINION IN NEPHROLOGY AND HYPERTENSION, 2019, 28 (06): : 631 - 640
  • [35] Predicting the time to get back to work using statistical models and machine learning approaches
    Bouliotis, George
    Underwood, M.
    Froud, R.
    BMC MEDICAL RESEARCH METHODOLOGY, 2024, 24 (01)
  • [36] Predicting Asthma Exacerbations Using Machine Learning Models
    Turcatel, Gianluca
    Xiao, Yi
    Caveney, Scott
    Gnacadja, Gilles
    Kim, Julie
    Molfino, Nestor A.
    ADVANCES IN THERAPY, 2025, 42 (01) : 362 - 374
  • [37] Predicting Transfer From Peritoneal Dialysis to Hemodialysis Using the Peritoneal Dialysis Surprise Question
    Anwaar, Ayesha
    Liu, Sai
    Nielsen, Hatsumi
    Montez-Rath, Maria E.
    Abra, Graham E.
    Sun, Sumi J.
    Schiller, Brigitte
    Hussein, Wael F.
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2022, 33 (11): : 464 - 464
  • [38] PRIORITIZED HOME VISITS USING MACHINE LEARNING FOR PERITONEAL DIALYSIS INFECTION PREVENTION
    Sapsitthikul, Tossaporn
    Pongpirul, Krit
    Kanjanabuch, Talerngsak
    NEPHROLOGY, 2023, 28 : 82 - 82
  • [39] Prediction of dialysis adequacy using data-driven machine learning algorithms
    Liu, Yi-Chen
    Qing, Ji-Ping
    Li, Rong
    Chang, Juan
    Xu, Li-Xia
    RENAL FAILURE, 2024, 46 (02)
  • [40] A novel approach to dry weight adjustments for dialysis patients using machine learning
    Kim, Hae Ri
    Bae, Hong Jin
    Jeon, Jae Wan
    Ham, Young Rok
    Na, Ki Ryang
    Lee, Kang Wook
    Hyon, Yun Kyong
    Choi, Dae Eun
    PLOS ONE, 2021, 16 (04):