Short-Term Load Forecasting Method Based on Bidirectional Long Short-Term Memory Model with Stochastic Weight Averaging Algorithm

被引:2
|
作者
Zhu, Qingyun [1 ]
Zeng, Shunqi [2 ]
Chen, Minghui [2 ]
Wang, Fei [2 ]
Zhang, Zhen [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
[2] Guangdong Power Grid Co Ltd, Guangzhou Power Supply Bur, Guangzhou 510623, Peoples R China
关键词
load forecasting; feature clustering; principal component analysis; bidirectional long-short-term memory network;
D O I
10.3390/electronics13153098
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To accommodate the rapid development of the distribution network of China, it is essential to research load forecasting methods with higher accuracy and stronger generalization capabilities in order to optimize distribution system control strategies, ensure the efficient and reliable operation of the power system, and provide a stable power supply to users. In this paper, a short-term load forecasting method is proposed for low-voltage distribution substations based on the bidirectional long short-term memory (BiLSTM) model. First, principal component analysis (PCA) and the fuzzy C-means method based on a genetic algorithm (GA-FCM) are used to extract the main influencing factors and classify different types of user electricity consumption behaviors. Then, the BiLSTM forecasting model utilizing the stochastic weight averaging (SWA) algorithm to enhance generalization capability is constructed. Finally, the load data from a low-voltage distribution substation in China over recent years are selected as a case study. Compared with conventional LSTM and BiLSTM prediction models, the annual electricity load curves for various user types forecasted by the PCA-BiLSTM model are more closely aligned with actual data curves. The proposed BiLSTM forecasting model exhibits higher accuracy and can forecast user electricity consumption data that more accurately reflect real-life usage.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Short-term load forecasting based on SV model
    Chen, Hao
    Wang, Yurong
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2010, 30 (11): : 86 - 89
  • [42] SHORT-TERM LOAD FORECASTING BASED ON IMPROVED PARTICLE SWARM OPTIMISATION AND LONG SHORT-TERM MEMORY NETWORK1
    Yan, Qingyou
    Wang, Yonghua
    Qin, Guangyu
    Zhu, Jingyao
    Zidonis, Zilvinas
    TRANSFORMATIONS IN BUSINESS & ECONOMICS, 2021, 20 (01): : 154 - 177
  • [43] An Enhancement Method Based on Long Short-Term Memory Neural Network for Short-Term Natural Gas Consumption Forecasting
    Liu, Jinyuan
    Wang, Shouxi
    Wei, Nan
    Yang, Yi
    Lv, Yihao
    Wang, Xu
    Zeng, Fanhua
    ENERGIES, 2023, 16 (03)
  • [44] Microgrid Load Forecasting Based on Improved Long Short-Term Memory Network
    Huang, Qiyue
    Zheng, Yuqing
    Xu, Yuxuan
    JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2022, 2022
  • [45] SHORT-TERM LOAD FORECASTING
    GROSS, G
    GALIANA, FD
    PROCEEDINGS OF THE IEEE, 1987, 75 (12) : 1558 - 1573
  • [46] Forecasting a Short-Term Photovoltaic Power Model Based on Improved Snake Optimization, Convolutional Neural Network, and Bidirectional Long Short-Term Memory Network
    Wang, Yonggang
    Yao, Yilin
    Zou, Qiuying
    Zhao, Kaixing
    Hao, Yue
    SENSORS, 2024, 24 (12)
  • [47] A Short-Term Wind Speed Forecasting Model Based on a Multi-Variable Long Short-Term Memory Network
    Xie, Anqi
    Yang, Hao
    Chen, Jing
    Sheng, Li
    Zhang, Qian
    ATMOSPHERE, 2021, 12 (05)
  • [48] Short-term Forecasting Approach Based on bidirectional long short-term memory and convolutional neural network for Regional Photovoltaic Power Plants
    Li, Gang
    Guo, Shunda
    Li, Xiufeng
    Cheng, Chuntian
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2023, 34
  • [49] Short-term electricity demand forecasting via variational autoencoders and batch training-based bidirectional long short-term memory
    Moradzadeh, Arash
    Moayyed, Hamed
    Zare, Kazem
    Mohammadi-Ivatloo, Behnam
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 52
  • [50] Assessment of stacked unidirectional and bidirectional long short-term memory networks for electricity load forecasting
    Atef, Sara
    Eltawil, Amr B.
    ELECTRIC POWER SYSTEMS RESEARCH, 2020, 187 (187)