RoFL: A Robust Federated Learning Scheme Against Malicious Attacks

被引:0
作者
Wei, Ming [1 ]
Liu, Xiaofan [1 ]
Ren, Wei [1 ,2 ,3 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan, Peoples R China
[2] Henan Key Lab Network Cryptog Technol, Zhengzhou, Peoples R China
[3] Hubei Key Lab Intelligent Geoinformat Proc, Wuhan, Peoples R China
来源
WEB AND BIG DATA, PT III, APWEB-WAIM 2022 | 2023年 / 13423卷
基金
中国国家自然科学基金;
关键词
Federated learning; Privacy protection; Malicious detection; Edge computing; SECURITY;
D O I
10.1007/978-3-031-25201-3_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Privacy protection is increasingly important in contemporary machine learning-based applications. While federated learning can provide privacy protection to some extent, it assumes that clients (and their updates) are trusted. However, we also need to consider the potential of malicious or compromised clients. In this paper, we propose a robust federated learning (RoFL) scheme, designed to detect multiple attacks and block malicious updates from being passed to the central model. To validate our scheme, we train a CNN classification model based on the MNIST dataset. We then conduct experiments focusing on the impacts of model parameters (e.g., malicious amplification factors, fractions of training clients, fractions of malicious clients, and data distribution characteristics (i.e., IID or Non-IID)) on the proposed (RoFL) scheme. The findings demonstrate that the proposed (RoFL) scheme can effectively protect federated learning models from malicious attacks.
引用
收藏
页码:277 / 291
页数:15
相关论文
共 19 条
  • [1] Agarwal N, 2018, Arxiv, DOI arXiv:1805.10559
  • [2] Aledhari M, 2020, IEEE ACCESS, V8, P140699, DOI [10.1109/access.2020.3013541, 10.1109/ACCESS.2020.3013541]
  • [3] Bhowmick A, 2019, Arxiv, DOI arXiv:1812.00984
  • [4] Bonawitz K, 2019, Arxiv, DOI arXiv:1902.01046
  • [5] Practical Secure Aggregation for Privacy-Preserving Machine Learning
    Bonawitz, Keith
    Ivanov, Vladimir
    Kreuter, Ben
    Marcedone, Antonio
    McMahan, H. Brendan
    Patel, Sarvar
    Ramage, Daniel
    Segal, Aaron
    Seth, Karn
    [J]. CCS'17: PROCEEDINGS OF THE 2017 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2017, : 1175 - 1191
  • [6] Buescher Niklas, 2017, Proceedings on Privacy Enhancing Technologies, V2017, P198, DOI 10.1515/popets-2017-0045
  • [7] Deng L., 2012, IEEE SIGNAL PROC MAG, V29, P141, DOI [10.1109/MSP.2012.2211477, DOI 10.1109/MSP.2012.2211477]
  • [8] Konečny J, 2017, Arxiv, DOI [arXiv:1610.05492, DOI 10.48550/ARXIV.1610.05492]
  • [9] LBS Meets Blockchain: An Efficient Method With Security Preserving Trust in SAGIN
    Li, Bohan
    Liang, Ruochen
    Zhou, Wei
    Yin, Hailian
    Gao, Han
    Cai, Ken
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (08): : 5932 - 5942
  • [10] Federated Learning: Challenges, Methods, and Future Directions
    Li, Tian
    Sahu, Anit Kumar
    Talwalkar, Ameet
    Smith, Virginia
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2020, 37 (03) : 50 - 60