The Ithildin library for efficient numerical solution of anisotropic reaction-diffusion problems in excitable media

被引:0
作者
Kabus, Desmond [1 ,2 ]
Cloet, Marie [1 ]
Zemlin, Christian [3 ]
Bernus, Olivier [4 ]
Dierckx, Hans [1 ]
机构
[1] KU Leuven Campus Kortrijk KULAK, Dept Math, Kortrijk, Belgium
[2] Leiden Univ Med Ctr LUMC, Lab Expt Cardiol, Leiden, Netherlands
[3] Washington Univ, Dept Surg, Div Cardiothorac Surg, Sch Med, St Louis, MO USA
[4] Univ Bordeaux, Hop Xavier Arnozan, Ctr Rech Cardiothorac Bordeaux U1045, Inserm,IHU Liryc, Pessac, France
来源
PLOS ONE | 2024年 / 19卷 / 09期
关键词
SPIRAL BREAKUP; MODEL; SIMULATIONS; ALTERNANS; EQUATIONS; DYNAMICS; WAVES;
D O I
10.1371/journal.pone.0303674
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ithildin is an open-source library and framework for efficient parallelized simulations of excitable media, written in the C++ programming language. It uses parallelization on multiple CPU processors via the message passing interface (MPI). We demonstrate the library's versatility through a series of simulations in the context of the monodomain description of cardiac electrophysiology, including the S1S2 protocol, spiral break-up, and spiral waves in ventricular geometry. Our work demonstrates the power of Ithildin as a tool for studying complex wave patterns in cardiac tissue and its potential to inform future experimental and theoretical studies. We publish our full code with this paper in the name of open science.
引用
收藏
页数:26
相关论文
共 65 条
[11]   Bidomain ECG Simulations Using an Augmented Monodomain Model for the Cardiac Source [J].
Bishop, Martin J. ;
Plank, Gernot .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2011, 58 (08) :2297-2307
[12]   Minimal model for human ventricular action potentials in tissue [J].
Bueno-Orovio, Alfonso ;
Cherry, Elizabeth M. ;
Fenton, Flavio H. .
JOURNAL OF THEORETICAL BIOLOGY, 2008, 253 (03) :544-560
[13]   Exact coherent structures and chaotic dynamics in a model of cardiac tissue [J].
Byrne, Greg ;
Marcotte, Christopher D. ;
Grigoriev, Roman O. .
CHAOS, 2015, 25 (03)
[14]   Lattice Boltzmann method for parallel simulations of cardiac electrophysiology using GPUs [J].
Campos, J. O. ;
Oliveira, R. S. ;
dos Santos, R. W. ;
Rocha, B. M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 295 :70-82
[15]  
CARMEN, Cardiac ElectroPhysiology Simulator (CEPS)
[16]  
Clarke JA, 2007, PROCEEDINGS OF THE HPCMP USERS GROUP CONFERENCE 2007, P322
[17]   Models of cardiac tissue electrophysiology: Progress, challenges and open questions [J].
Clayton, R. H. ;
Bernus, O. ;
Cherry, E. M. ;
Dierckx, H. ;
Fenton, F. H. ;
Mirabella, L. ;
Panfilov, A. V. ;
Sachse, F. B. ;
Seemann, G. ;
Zhang, H. .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2011, 104 (1-3) :22-48
[18]   Phase singularities and filaments: Simplifying complexity in computational models of ventricular fibrillation [J].
Clayton, RH ;
Zhuchkova, EA ;
Panfilov, AV .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2006, 90 (1-3) :378-398
[19]   Scroll Waves and Filaments in Excitable Media of Higher Spatial Dimension [J].
Cloet, Marie ;
Arno, Louise ;
Kabus, Desmond ;
Van der Veken, Joeri ;
Panfilov, Alexander V. ;
Dierckx, Hans .
PHYSICAL REVIEW LETTERS, 2023, 131 (20)
[20]  
Cooper Fergus R, 2020, J Open Source Softw, V5, P1848, DOI 10.21105/joss.01848