A 2D hybrid nanocomposite: a promising anode material for lithium-ion batteries at high temperature

被引:0
|
作者
Sekhar, Bongu Chandra [1 ]
Soliman, Abdelrahman [1 ]
Arsalan, Muhammad [2 ]
Alsharaeh, Edreese H. [1 ]
机构
[1] Alfaisal Univ, Coll Sci & Gen Studies, POB 50927, Riyadh 11533, Saudi Arabia
[2] Saudi Aramco, EXPEC Adv Res Ctr, POB 5000, Dhahran 31311, Saudi Arabia
来源
NANOSCALE ADVANCES | 2024年 / 6卷 / 22期
关键词
BORON-NITRIDE; ASSISTED SYNTHESIS; CARBON NANOFIBERS; POROUS CARBON; BINDER-FREE; GRAPHENE; STORAGE; COMPOSITES; COS2; HETEROSTRUCTURES;
D O I
10.1039/d4na00424h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Two-dimensional atomically thick materials including graphene, BN, and molybdenum disulfide (MoS2) have been investigated as possible energy storage materials, because of their large specific surface area, potential redox activity, and mechanical stability. Unfortunately, these materials cannot reach their full potential due to their low electrical conductivity and layered structural restacking. These problems have been somewhat resolved in the past by composite electrodes composed of a graphene and MoS2 mixture; however, insufficient mixing at the nanoscale still limits performance. Here, we examined lithium-ion battery electrodes and reported three composites made using a basic ball milling technique and sonication method. The 5% BN-G@MoS2-50@50 composite obtained has a homogeneous distribution of MoS2 on the graphene sheet and H-BN with high crystallinity. Compared to the other two composites (5% BN-G@MoS2-10@90 and 5% BN-G@MoS2-90@10), the 5% BN-G@MoS2-50@50 composite electrode exhibits a high specific capacity of 765 mA h g-1 and a current density of 100 mA g-1 in batteries. Additionally, the 5% BN-G@MoS2-50@50 composite electrode displays an excellent rate capability (453 mA h g-1 at a current density of 1000 mA g-1) at a high temperature of 70 degrees C, thanks to h-BN that allows reliable and safe operation of lithium-ion batteries. Our research may pave the way for the sensible design of different anode materials, including 2D materials (5% BN-G@MoS2-50@50) for high-performance LIBs and other energy-related fields. The preparation and electrochemical characterization of a 5% BN-G@MoS2-50@50 composite electrode at room temperature and high temperature.
引用
收藏
页码:5612 / 5624
页数:13
相关论文
共 50 条
  • [31] Manganese ferrite-graphene nanocomposite as a high-performance anode material for lithium-ion batteries
    Zeng, Guiyu
    Zhang, Juan
    Fu, Yuyong
    Nie, Fude
    Wang, Xin
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2015, 106 (08) : 915 - 918
  • [32] Defective Carbon Nanocone as an Anode Material for Lithium-Ion Batteries
    Omidvar, Akbar
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (11) : 11463 - 11469
  • [33] Lithium gallium oxide (LiGaO2): High-performance anode material for lithium-ion batteries
    Ma, Fukun
    Guan, Shengjing
    Wang, Yan-Jie
    Liu, Zhimeng
    Li, Wenfang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 976
  • [34] VPO4@C/graphene microsphere as a potential anode material for lithium-ion batteries
    Tang, Lin-bo
    Xiao, Bin
    An, Chang-sheng
    Li, Hui
    He, Zhen-jiang
    Zheng, Jun-chao
    CERAMICS INTERNATIONAL, 2018, 44 (12) : 14432 - 14438
  • [35] Siligraphene as a promising anode material for lithium-ion batteries predicted from first-principles calculations
    Wang, Hewen
    Wu, Musheng
    Lei, Xueling
    Tian, Zhengfang
    Xu, Bo
    Huang, Kevin
    Ouyang, Chuying
    NANO ENERGY, 2018, 49 : 67 - 76
  • [36] First-Principle Study of a ZnS/Graphene Heterostructure as a Promising Anode Material for Lithium-Ion Batteries
    Feng, Shihao
    Wang, Zhixing
    Guo, Huajun
    Li, Xinhai
    Yan, Guochun
    Wang, Jiexi
    ENERGY & FUELS, 2022, 36 (01) : 677 - 683
  • [37] Promising two-dimensional nanocomposite for the anode of the lithium-ion batteries. Computer simulation
    Galashev, A. Y.
    Rakhmanova, O. R.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2021, 126
  • [38] Synthesis of graphene supported Li2SiO3 as a high performance anode material for lithium-ion batteries
    Yang, Shuai
    Wang, Qiufen
    Miao, Juan
    Zhang, Jingyang
    Zhang, Dafeng
    Chen, Yumei
    Yang, Hong
    APPLIED SURFACE SCIENCE, 2018, 444 : 522 - 529
  • [39] Graphene-Supported Ce-SnS2 Nanocomposite as Anode Material for Lithium-Ion Batteries
    Wang, Qiufen
    Huang, Ying
    Miao, Juan
    Zhao, Yang
    Zhang, Wei
    Wang, Yan
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2013, 96 (07) : 2190 - 2196
  • [40] Superior cycle performance of Sn@C/graphene nanocomposite as an anode material for lithium-ion batteries
    Liang, Shuzhao
    Zhu, Xuefeng
    Lian, Peichao
    Yang, Weishen
    Wang, Haihui
    JOURNAL OF SOLID STATE CHEMISTRY, 2011, 184 (06) : 1400 - 1404