Challenges and Strategies of Fast-Charging Li-Ion Batteries with a Focus on Li Plating

被引:2
|
作者
Dong, Yongteng [1 ]
Chen, Yuanmao [1 ]
Zeng, Qinghui [1 ]
Feng, Jiayu [1 ,2 ]
Fang, Mingming [1 ]
Shi, Zhangqin [1 ]
Liu, Jijiang [1 ]
Sheng, Yeliang [1 ]
Yue, Xinyang [1 ]
Liang, Zheng [1 ]
机构
[1] Shanghai Jiao Tong Univ, Frontiers Sci Ctr Transformat Mol, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200240, Peoples R China
来源
ENERGY MATERIAL ADVANCES | 2024年 / 5卷
基金
国家重点研发计划;
关键词
LITHIUM METAL-DEPOSITION; GRAPHITE ANODE; RECHARGEABLE BATTERIES; ELECTROLYTE ADDITIVES; INTERFACE; SOLVATION; CELLS; INTERCALATION; PERFORMANCE; OVERCHARGE;
D O I
10.34133/energymatadv.0113
中图分类号
O59 [应用物理学];
学科分类号
摘要
As the world enters into the era of electrifying transportation for cleaner energy, lithium-ion battery (LIB)-powered electric vehicles have drawn great attention in recent years. However, the fast-charging capability of LIBs has long been regarded as the technological obstacle to the wider adoption of battery electric vehicles (BEVs) in the market. A substantial challenge associated with fast charging is the formation of Li plating on the graphite anode as it is the major contributor of side reactions during cell operations. In this review, the fundamentals of Li plating and corresponding influencing factors (including state of charge [SOC], charging current density, temperature, and N/P ratio) for the Li-ion intercalation process are first elucidated under fast-charging conditions. Furthermore, conventional strategies to suppress Li plating by enhancing ion transport kinetics between interface and electrode through anode engineering and electrolyte design are also summarized and analyzed. Then, innovative strategies for achieving ultrahigh SOC of anodes by regulating Li plating morphology on host materials to construct hybrid anode storage are discussed in detail. Two types of strategies are compared in terms of cell performance, process simplicity, and safety concerns. Last, we highlight some research orientations and perspectives pertaining to the development of hybrid anode storage, providing effective approaches to address Li plating issues for fast-charging LIBs.
引用
收藏
页数:14
相关论文
共 50 条
  • [42] DISCOVERY AND DEVELOPMENT OF A FAST CHARGING LI-ION BATTERY
    Liu, Teng
    Yang, Xiao-Guang
    Wang, Chao-Yang
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2018, VOL 6A, 2019,
  • [43] Cathode Chemistries and Electrode Parameters Affecting the Fast Charging Performance of Li-Ion Batteries
    Zhao, Rui
    Liu, Jie
    Ma, Fai
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2020, 17 (02)
  • [44] Particle size effect of graphite anodes on performance of fast charging Li-ion batteries
    Wang, Guanyi
    Mijailovic, Aleksandar
    Yang, Jian
    Xiong, Jie
    Beasley, Sarah E.
    Mathew, Kevin
    Zhou, Bingyao
    Lu, Wenquan
    Sheldon, Brian W.
    Wu, Qingliu
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (40) : 21793 - 21805
  • [45] Effects of solvent formulations in electrolytes on fast charging of Li-ion cells
    Wu, Xianyang
    Liu, Tianyi
    Bai, Yaocai
    Feng, Xu
    Rahman, Muhammad Mominur
    Sun, Cheng-Jun
    Lin, Feng
    Zhao, Kejie
    Du, Zhijia
    ELECTROCHIMICA ACTA, 2020, 353 (353)
  • [46] A Critical Review on The Effects of Pulse Charging of Li-ion Batteries
    Vermeer, Wiljan
    Stecca, Marco
    Mouli, Gautham Ram Chandra
    Bauer, Pavol
    2021 IEEE 19TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE (PEMC), 2021, : 217 - 224
  • [47] Challenges in Accommodating Volume Change of Si Anodes for Li-Ion Batteries
    Ko, Minseong
    Chae, Sujong
    Cho, Jaephil
    CHEMELECTROCHEM, 2015, 2 (11): : 1645 - 1651
  • [48] Enabling 6C Fast Charging of Li-Ion Batteries with Graphite/Hard Carbon Hybrid Anodes
    Chen, Kuan-Hung
    Goel, Vishwas
    Namkoong, Min Ji
    Wied, Markus
    Muller, Simon
    Wood, Vanessa
    Sakamoto, Jeff
    Thornton, Katsuyo
    Dasgupta, Neil P.
    ADVANCED ENERGY MATERIALS, 2021, 11 (05)
  • [49] Factors Limiting Li+ Charge Transfer Kinetics in Li-Ion Batteries
    Jow, T. Richard
    Delp, Samuel A.
    Allen, Jan L.
    Jones, John-Paul
    Smart, Marshall C.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (02) : A361 - A367
  • [50] Heating strategies for Li-ion batteries operated from subzero temperatures
    Ji, Yan
    Wang, Chao Yang
    ELECTROCHIMICA ACTA, 2013, 107 : 664 - 674