A hybridizable discontinuous Galerkin method for the coupled Navier-Stokes/Biot problem

被引:1
作者
Cesmelioglu, Aycil [1 ]
Lee, Jeonghun J. [2 ]
Rhebergen, Sander [3 ]
机构
[1] Oakland Univ, Dept Math & Stat, Rochester, MI USA
[2] Baylor Univ, Dept Math, Waco, TX USA
[3] Univ Waterloo, Dept Appl Math, Waterloo, ON, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Navier-Stokes equations; Biot's consolidation model; poroelasticity; Beavers-Joseph-Saffman; hybridized methods; discontinuous Galerkin; FINITE-ELEMENT-METHOD; FLUID; CONSOLIDATION; ELASTICITY;
D O I
10.1051/m2an/2024045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a hybridizable discontinuous Galerkin method for the time-dependent Navier-Stokes equations coupled to the quasi-static poroelasticity equations via interface conditions. We determine a bound on the data that guarantees stability and well-posedness of the fully discrete problem and prove a priori error estimates. A numerical example confirms our analysis.
引用
收藏
页码:1461 / 1495
页数:35
相关论文
共 52 条
[1]   A nonlinear Stokes-Biot model for the interaction of a non-Newtonian fluid with poroelastic media [J].
Ambartsumyan, Ilona ;
Ervin, Vincent J. ;
Truong Nguyen ;
Yotov, Ivan .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2019, 53 (06) :1915-1955
[2]   A Lagrange multiplier method for a Stokes-Biot fluid-poroelastic structure interaction model [J].
Ambartsumyan, Ilona ;
Khattatov, Eldar ;
Yotov, Ivan ;
Zunino, Paolo .
NUMERISCHE MATHEMATIK, 2018, 140 (02) :513-553
[3]  
[Anonymous], 1957, J APPL MECH, DOI [DOI 10.1115/1.4011606, DOI 10.1016/B978-0-444-98950-5.50011-3]
[4]  
[Anonymous], 2008, Introduction to the Numerical Analysis of Incompressible Viscous Flows
[5]   Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction [J].
Badia, Santiago ;
Quaini, Annalisa ;
Quarteroni, Alfio .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (21) :7986-8014
[6]   BOUNDARY CONDITIONS AT A NATURALLY PERMEABLE WALL [J].
BEAVERS, GS ;
JOSEPH, DD .
JOURNAL OF FLUID MECHANICS, 1967, 30 :197-&
[7]   A staggered finite element procedure for the coupled Stokes-Biot system with fluid entry resistance [J].
Bergkamp, E. A. ;
Verhoosel, C. V. ;
Remmers, J. J. C. ;
Smeulders, D. M. J. .
COMPUTATIONAL GEOSCIENCES, 2020, 24 (04) :1497-1522
[8]   THEORY OF ELASTICITY AND CONSOLIDATION FOR A POROUS ANISOTROPIC SOLID [J].
BIOT, MA .
JOURNAL OF APPLIED PHYSICS, 1955, 26 (02) :182-185
[9]   General theory of three-dimensional consolidation [J].
Biot, MA .
JOURNAL OF APPLIED PHYSICS, 1941, 12 (02) :155-164
[10]   Parameter-robust methods for the Biot-Stokes interfacial coupling without Lagrange multipliers [J].
Boon, Wietse M. ;
Hornkjol, Martin ;
Kuchta, Miroslav ;
Mardal, Kent-Andre ;
Ruiz-Baier, Ricardo .
JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 467