A graph neural network with topic relation heterogeneous multi-level cross-item information for session-based recommendation

被引:3
|
作者
Yang, Fan [1 ]
Peng, Dunlu [1 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Opt Elect & Comp Engn, Shanghai 200093, Peoples R China
基金
中国国家自然科学基金;
关键词
Session-based recommendation; Topic relation heterogeneous cross-item graph; Channel-hybrid attention; Label smoothing;
D O I
10.1016/j.is.2024.102380
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The aim of session-based recommendation (SBR) mainly analyzes the anonymous user's historical behavior records to predict the next possible interaction item and recommend the result to the user. However, due to the anonymity of users and the sparsity of behavior records, recommendation results are often inaccurate. The existing SBR models mainly consider the order of items within a session and rarely analyze the complex transition relationship between items, and additionally, they are inadequate at mining higher-order hidden relationship between different sessions. To address these issues, we propose a topic relation heterogeneous multi-level cross-item information graph neural network (TRHMCI-GNN) to improve the performance of recommendation. The model attempts to capture hidden relationship between items through topic classification and build a topic relation heterogeneous cross-item global graph. The graph contains inter-session cross-item information as well as hidden topic relation among sessions. In addition, a self-loop star graph is established to learn the intra-session cross-item information, and the self-connection attributes are added to fuse the information of each item itself. By using channel-hybrid attention mechanism, the item information of different levels is pooled by two channels: max-pooling and mean-pooling, which effectively fuse the item information of cross-item global graph and self-loop star graph. In this way, the model captures the global information of the target item and its individual features, and the label smoothing operation is added for recommendation. Extensive experimental results demonstrate that the recommendation performance of TRHMCI-GNN model is superior to the comparable baseline models on the three real datasets Diginetica, Yoochoose1/64 and Tmall. The code is available now.1 1
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Graph neural network based model for multi-behavior session-based recommendation
    Bo Yu
    Ruoqian Zhang
    Wei Chen
    Junhua Fang
    GeoInformatica, 2022, 26 : 429 - 447
  • [22] A Survey on Session-Based Recommendation Methods with Graph Neural Network
    Zhang X.
    Zhu N.
    Guo Y.
    Data Analysis and Knowledge Discovery, 2024, 8 (02) : 1 - 16
  • [23] DGNN: Denoising graph neural network for session-based recommendation
    Dai, Jiuqian
    Yuan, Weihua
    Bao, Chen
    Zhang, Zhijun
    2022 IEEE 9TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2022, : 824 - 831
  • [24] Heterogeneous Global Graph Neural Networks for Personalized Session-based Recommendation
    Pang, Yitong
    Wu, Lingfei
    Shen, Qi
    Zhang, Yiming
    Wei, Zhihua
    Xu, Fangli
    Chang, Ethan
    Long, Bo
    Pei, Jian
    WSDM'22: PROCEEDINGS OF THE FIFTEENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2022, : 775 - 783
  • [25] Session-Based Recommendation with Graph Neural Networks
    Wu, Shu
    Tang, Yuyuan
    Zhu, Yanqiao
    Wang, Liang
    Xie, Xing
    Tan, Tieniu
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 346 - 353
  • [26] Graph Context Target Attention Graph Neural Network for Session-based Recommendation
    Chen, Jiale
    Xing, Xing
    Niu, Yong
    Zhang, Xuanming
    Jia, Zhichun
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 83 - 88
  • [27] Combine temporal information in session-based recommendation with graph neural networks
    Chen, Quanzhen
    Jiang, Feng
    Guo, Xuyao
    Chen, Jin
    Sha, Kaiyue
    Wang, Yuxuan
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [28] Handling Information Loss of Graph Neural Networks for Session-based Recommendation
    Chen, Tianwen
    Wong, Raymond Chi-Wing
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 1172 - 1180
  • [29] Multi-behavior Graph Neural Networks for Session-based Recommendation
    Pan, Wenhao
    Yang, Kai
    2021 3RD INTERNATIONAL CONFERENCE ON MACHINE LEARNING, BIG DATA AND BUSINESS INTELLIGENCE (MLBDBI 2021), 2021, : 756 - 761
  • [30] Multi-Faceted Global Item Relation Learning for Session-Based Recommendation
    Han, Qilong
    Zhang, Chi
    Chen, Rui
    Lai, Riwei
    Song, Hongtao
    Li, Li
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 1705 - 1715