Machine learning assisted identification of antibiotic-resistant Staphylococcus aureus strains using a paper-based ratiometric sensor array

被引:3
作者
Laliwala, Aayushi [1 ,6 ]
Gupta, Ritika [1 ]
Svechkarev, Denis [2 ]
Bayles, Kenneth W. [4 ]
Sadykov, Marat R. [3 ]
Mohs, Aaron M. [1 ,3 ,4 ,5 ]
机构
[1] Univ Nebraska Med Ctr, Dept Pharmaceut Sci, Omaha, NE 68198 USA
[2] Univ Nebraska Omaha, Dept Chem, Omaha, NE 68182 USA
[3] Univ Nebraska Med Ctr, Dept Pathol Microbiol & Immunol, Omaha, NE 68198 USA
[4] Univ Nebraska Med Ctr, Fred & Pamela Buffet Canc Ctr, Omaha, NE 68198 USA
[5] Univ Nebraska Med Ctr, Dept Biochem & Mol Biol, Omaha, NE 68198 USA
[6] Case Western Reserve Univ, Dept Radiol, Cleveland, OH 44106 USA
基金
美国国家卫生研究院;
关键词
S; aureus; Antibiotic-resistance; Differential sensing; Multivariate analysis; Pattern analysis; Biofilms; BIOFILM FORMATION; SUSCEPTIBILITY; INFECTIONS; MECHANISMS; PROTEINS; ELEMENT; RISK;
D O I
10.1016/j.microc.2024.111395
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Staphylococcus aureus, , a versatile human pathogen, significantly impacts global health causing a broad spectrum of medical conditions that range from minor skin infections to life-threatening diseases. The clinical importance of S. aureus is underscored by its resistance to multiple antibiotics and formation of biofilms, providing protection against antimicrobials and immune responses. To date, the identification of antimicrobial-resistant (AMR) S. aureus strains, such as methicillin-resistant S. aureus (MRSA) and vancomycin-intermediate S. aureus (VISA), requires time-consuming and expensive methodologies, including culture-based, molecular, and phenotypic techniques. Previously, we developed a paper-based ratiometric sensor array composed of fluorescent sensor dyes (3-hydroxyflavone derivatives) pre-adsorbed on paper microzone plates. Combined with machine learning algorithms such as neural networks, this sensor effectively discriminated 16 bacterial species and determined their Gram status. In this study, we evaluate its ability to distinguish antibiotic-resistant S. aureus strains and their biofilms. Our results demonstrate that the sensor array, in conjunction with LDA and neural networks, successfully differentiated three common laboratory MRSA strains from three methicillin-susceptible S. aureus (MSSA) strains with 82.5% accuracy. Furthermore, using support vector machines, this sensor was able to distinguish and categorically classify MRSA, MSSA, and VISA clinical isolates with 97.5% accuracy. Remarkably, beyond distinguishing planktonic cultures, this sensor array demonstrated a formidable capability to discriminate AMR S. aureus biofilms, achieving over 80% accuracy. Combined, the results of this study highlight the paper-based sensor array's significant potential as a robust diagnostic tool to accurately, rapidly, and easily identify drug-resistant S. aureus strains in clinically relevant settings.
引用
收藏
页数:10
相关论文
共 74 条
[1]   PRINCIPLES AND APPLICATIONS OF POLYMERASE CHAIN REACTION IN MEDICAL DIAGNOSTIC FIELDS: A REVIEW [J].
Alves Valones, Marcela Agne ;
Guimaraes, Rafael Lima ;
Cavalcanti Brandao, Lucas Andre ;
Eleuterio de Souza, Paulo Roberto ;
Tavares Carvalho, Alessandra de Albuquerque ;
Crovela, Sergio .
BRAZILIAN JOURNAL OF MICROBIOLOGY, 2009, 40 (01) :1-11
[2]   Staphylococcus aureus biofilms Properties, regulation and roles in human disease [J].
Archer, Nathan K. ;
Mazaitis, Mark J. ;
Costerton, J. William ;
Leid, Jeff G. ;
Powers, Mary Elizabeth ;
Shirtliff, Mark E. .
VIRULENCE, 2011, 2 (05) :445-459
[3]   Genome and virulence determinants of high virulence community-acquired MRSA [J].
Baba, T ;
Takeuchi, F ;
Kuroda, M ;
Yuzawa, H ;
Aoki, K ;
Oguchi, A ;
Nagai, Y ;
Iwama, N ;
Asano, K ;
Naimi, T ;
Kuroda, H ;
Cui, L ;
Yamamoto, K ;
Hiramatsu, K .
LANCET, 2002, 359 (9320) :1819-1827
[4]   β-Lactam Resistance in Methicillin-Resistant Staphylococcus aureus USA300 Is Increased by Inactivation of the ClpXP Protease [J].
Baek, Kristoffer T. ;
Grundling, Angelika ;
Mogensen, Rene G. ;
Thogersen, Louise ;
Petersen, Andreas ;
Paulander, Wilhelm ;
Frees, Dorte .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2014, 58 (08) :4593-4603
[5]   Increased Cell Wall Teichoic Acid Production and D-alanylation Are Common Phenotypes among Daptomycin-Resistant Methicillin-Resistant Staphylococcus aureus (MRSA) Clinical Isolates [J].
Bertsche, Ute ;
Yang, Soo-Jin ;
Kuehner, Daniel ;
Wanner, Stefanie ;
Mishra, Nagendra N. ;
Roth, Tobias ;
Nega, Mulugeta ;
Schneider, Alexander ;
Mayer, Christoph ;
Grau, Timo ;
Bayer, Arnold S. ;
Weidenmaier, Christopher .
PLOS ONE, 2013, 8 (06)
[6]   Prevention and treatment of Staphylococcus aureus biofilms [J].
Bhattacharya, Mohini ;
Wozniak, Daniel J. ;
Stoodley, Paul ;
Hall-Stoodley, Luanne .
EXPERT REVIEW OF ANTI-INFECTIVE THERAPY, 2015, 13 (12) :1499-1516
[7]   Guidelines for the laboratory diagnosis and susceptibility testing of methicillin-resistant Staphylococcus aureus (MRSA) [J].
Brown, DFJ ;
Edwards, DI ;
Hawkey, PM ;
Morrison, D ;
Ridgway, GL ;
Towner, KJ ;
Wren, MWD .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2005, 56 (06) :1000-1018
[8]   Paper Microzone Plates [J].
Carrilho, Emanuel ;
Phillips, Scott T. ;
Vella, Sarah J. ;
Martinez, Andres W. ;
Whitesides, George M. .
ANALYTICAL CHEMISTRY, 2009, 81 (15) :5990-5998
[9]  
cdc, COVID data tracker, DOI DOI 10.15585/MMWR.MM7006A4
[10]   Preparation of natural indicator incorporated media and its logical use as a colorimetric biosensor for rapid and sensitive detection of Methicillin-resistant Staphylococcus aureus [J].
Celik, Cagla ;
Ildiz, Nilay ;
Kaya, Melih Zeki ;
Kilic, Ayse Baldemir ;
Ocsoy, Ismail .
ANALYTICA CHIMICA ACTA, 2020, 1128 :80-89