Spectroscopy of N=50 isotones with the valence-space density matrix renormalization group

被引:9
作者
Tichai, A. [1 ,2 ,3 ]
Kapas, K. [4 ,5 ]
Miyagi, T. [1 ,2 ,4 ,5 ,6 ]
Werner, M. A. [5 ,7 ]
Legeza, Oe. [8 ]
Schwenk, A. [1 ,2 ,3 ]
Zarand, G. [7 ]
机构
[1] Tech Univ Darmstadt, Dept Phys, D-64289 Darmstadt, Germany
[2] GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany
[3] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany
[4] Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary
[5] Budapest Univ Technol & Econ, Inst Phys, Dept Theoret Phys, Muegyetem Rkp 3, H-1111 Budapest, Hungary
[6] Univ Tsukuba, Ctr Computat Sci, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058577, Japan
[7] Budapest Univ Technol & Econ, HUN REN BME Quantum Dynam & Correlat Res Grp, Muegyetem Rkp 3, H-1111 Budapest, Hungary
[8] Tech Univ Munich, Inst Adv Study, Lichtenbergstr 2a, D-85748 Garching, Germany
关键词
BODY PERTURBATION-THEORY; SHELL-MODEL; NUCLEI;
D O I
10.1016/j.physletb.2024.138841
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The recently proposed combination of the valence-space in-medium similarity renormalization group (VS-IMSRG) with the density matrix renormalization group (DMRG) offers a scalable and flexible many-body approach for strongly correlated open-shell nuclei. We use the VS-DMRG to investigate the low-lying spectroscopy of N = 50 isotones, which are characteristic for their transition between single-particle and collective excitations. We also study electromagnetic transitions and show the advantage of the VS-DMRG to capture the underlying physics more efficiently, with significantly improved convergence compared to state-of-the-art shell-model truncations. Combined with an analysis of quantum information measures, this further establishes the VS-DMRG as a valuable method for ab initio calculations of nuclei.
引用
收藏
页数:6
相关论文
共 74 条
[41]   The non-Abelian density matrix renormalization group algorithm [J].
McCulloch, IP ;
Gulácsi, M .
EUROPHYSICS LETTERS, 2002, 57 (06) :852-858
[42]   Converged ab initio calculations of heavy nuclei [J].
Miyagi, T. ;
Stroberg, S. R. ;
Navratil, P. ;
Hebeler, K. ;
Holt, J. D. .
PHYSICAL REVIEW C, 2022, 105 (01)
[43]   NuHamil : A numerical code to generate nuclear two- and three-body matrix elements from chiral effective field theory [J].
Miyagi, Takayuki .
EUROPEAN PHYSICAL JOURNAL A, 2023, 59 (07)
[44]   Structure of the Lightest Tin Isotopes [J].
Morris, T. D. ;
Simonis, J. ;
Stroberg, S. R. ;
Stumpf, C. ;
Hagen, G. ;
Holt, J. D. ;
Jansen, G. R. ;
Papenbrock, T. ;
Roth, R. ;
Schwenk, A. .
PHYSICAL REVIEW LETTERS, 2018, 120 (15)
[45]   Magnus expansion and in-medium similarity renormalization group [J].
Morris, T. D. ;
Parzuchowski, N. M. ;
Bogner, S. K. .
PHYSICAL REVIEW C, 2015, 92 (03)
[46]   Charge radii of exotic neon and magnesium isotopes [J].
Novario, S. J. ;
Hagen, G. ;
Jansen, G. R. ;
Papenbrock, T. .
PHYSICAL REVIEW C, 2020, 102 (05)
[47]   Shape Coexistence in 78Ni as the Portal to the Fifth Island of Inversion [J].
Nowacki, F. ;
Poves, A. ;
Caurier, E. ;
Bounthong, B. .
PHYSICAL REVIEW LETTERS, 2016, 117 (27)
[48]  
Perez-Obiol A., 2023, European Physical Journal A - Hadrons and Nuclei, DOI [10.1140/epja/s10050-023-01151-z, 10.1140/epja/s10050-023-01151-z]
[49]   Measuring orbital interaction using quantum information theory [J].
Rissler, J ;
Noack, RM ;
White, SR .
CHEMICAL PHYSICS, 2006, 323 (2-3) :519-531
[50]   Medium-Mass Nuclei with Normal-Ordered Chiral NN+3N Interactions [J].
Roth, Robert ;
Binder, Sven ;
Vobig, Klaus ;
Calci, Angelo ;
Langhammer, Joachim ;
Navratil, Petr .
PHYSICAL REVIEW LETTERS, 2012, 109 (05)