Spectroscopy of N=50 isotones with the valence-space density matrix renormalization group

被引:4
|
作者
Tichai, A. [1 ,2 ,3 ]
Kapas, K. [4 ,5 ]
Miyagi, T. [1 ,2 ,4 ,5 ,6 ]
Werner, M. A. [5 ,7 ]
Legeza, Oe. [8 ]
Schwenk, A. [1 ,2 ,3 ]
Zarand, G. [7 ]
机构
[1] Tech Univ Darmstadt, Dept Phys, D-64289 Darmstadt, Germany
[2] GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany
[3] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany
[4] Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary
[5] Budapest Univ Technol & Econ, Inst Phys, Dept Theoret Phys, Muegyetem Rkp 3, H-1111 Budapest, Hungary
[6] Univ Tsukuba, Ctr Computat Sci, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058577, Japan
[7] Budapest Univ Technol & Econ, HUN REN BME Quantum Dynam & Correlat Res Grp, Muegyetem Rkp 3, H-1111 Budapest, Hungary
[8] Tech Univ Munich, Inst Adv Study, Lichtenbergstr 2a, D-85748 Garching, Germany
关键词
BODY PERTURBATION-THEORY; SHELL-MODEL; NUCLEI;
D O I
10.1016/j.physletb.2024.138841
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The recently proposed combination of the valence-space in-medium similarity renormalization group (VS-IMSRG) with the density matrix renormalization group (DMRG) offers a scalable and flexible many-body approach for strongly correlated open-shell nuclei. We use the VS-DMRG to investigate the low-lying spectroscopy of N = 50 isotones, which are characteristic for their transition between single-particle and collective excitations. We also study electromagnetic transitions and show the advantage of the VS-DMRG to capture the underlying physics more efficiently, with significantly improved convergence compared to state-of-the-art shell-model truncations. Combined with an analysis of quantum information measures, this further establishes the VS-DMRG as a valuable method for ab initio calculations of nuclei.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Combining density matrix renormalization group and n-electron valence perturbation theory
    Guo, Sheng
    Chan, Garnet
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [2] Systematics of E2 strength in the sd shell with the valence-space in-medium similarity renormalization group
    Stroberg, S. R.
    Henderson, J.
    Hackman, G.
    Ruotsalainen, P.
    Hagen, G.
    Holt, J. D.
    PHYSICAL REVIEW C, 2022, 105 (03)
  • [3] Application of the density matrix renormalization group in momentum space
    Nishimoto, S
    Jeckelmann, E
    Gebhard, F
    Noack, RM
    PHYSICAL REVIEW B, 2002, 65 (16): : 1 - 12
  • [4] Real-space parallel density matrix renormalization group
    Stoudenmire, E. M.
    White, Steven R.
    PHYSICAL REVIEW B, 2013, 87 (15):
  • [5] The Density Matrix Renormalization Group
    Noack, RM
    White, SR
    DENSITY-MATRIX RENORMALIZATION: A NEW NUMERICAL METHOD IN PHYSICS, 1999, 528 : 27 - 66
  • [6] The density matrix renormalization group self-consistent field method: Orbital optimization with the density matrix renormalization group method in the active space
    Zgid, Dominika
    Nooijen, Marcel
    JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (14):
  • [7] Density matrix renormalization group on a cylinder in mixed real and momentum space
    Motruk, Johannes
    Zaletel, Michael P.
    Mong, Roger S. K.
    Pollmann, Frank
    PHYSICAL REVIEW B, 2016, 93 (15)
  • [8] Density-matrix renormalization-group method in momentum space
    Xiang, T.
    Physical Review B: Condensed Matter, 53 (16):
  • [9] Density-matrix renormalization-group method in momentum space
    Xiang, T
    PHYSICAL REVIEW B, 1996, 53 (16): : 10445 - 10448
  • [10] Ab initio valence-space in-medium similarity renormalization group calculations for neutron-rich P, Cl, and K isotopes
    谢萌冉
    沈留媛
    李健国
    李红蕙
    袁琪
    左维
    Chinese Physics C, 2024, 48 (07) : 185 - 194