Spectroscopy of N=50 isotones with the valence-space density matrix renormalization group

被引:9
作者
Tichai, A. [1 ,2 ,3 ]
Kapas, K. [4 ,5 ]
Miyagi, T. [1 ,2 ,4 ,5 ,6 ]
Werner, M. A. [5 ,7 ]
Legeza, Oe. [8 ]
Schwenk, A. [1 ,2 ,3 ]
Zarand, G. [7 ]
机构
[1] Tech Univ Darmstadt, Dept Phys, D-64289 Darmstadt, Germany
[2] GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany
[3] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany
[4] Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary
[5] Budapest Univ Technol & Econ, Inst Phys, Dept Theoret Phys, Muegyetem Rkp 3, H-1111 Budapest, Hungary
[6] Univ Tsukuba, Ctr Computat Sci, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058577, Japan
[7] Budapest Univ Technol & Econ, HUN REN BME Quantum Dynam & Correlat Res Grp, Muegyetem Rkp 3, H-1111 Budapest, Hungary
[8] Tech Univ Munich, Inst Adv Study, Lichtenbergstr 2a, D-85748 Garching, Germany
关键词
BODY PERTURBATION-THEORY; SHELL-MODEL; NUCLEI;
D O I
10.1016/j.physletb.2024.138841
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The recently proposed combination of the valence-space in-medium similarity renormalization group (VS-IMSRG) with the density matrix renormalization group (DMRG) offers a scalable and flexible many-body approach for strongly correlated open-shell nuclei. We use the VS-DMRG to investigate the low-lying spectroscopy of N = 50 isotones, which are characteristic for their transition between single-particle and collective excitations. We also study electromagnetic transitions and show the advantage of the VS-DMRG to capture the underlying physics more efficiently, with significantly improved convergence compared to state-of-the-art shell-model truncations. Combined with an analysis of quantum information measures, this further establishes the VS-DMRG as a valuable method for ab initio calculations of nuclei.
引用
收藏
页数:6
相关论文
共 74 条
[1]  
Arthuis P, 2024, Arxiv, DOI arXiv:2401.06675
[2]   Ab Initio Computation of Charge Densities for Sn and Xe Isotopes [J].
Arthuis, P. ;
Barbieri, C. ;
Vorabbi, M. ;
Finelli, P. .
PHYSICAL REVIEW LETTERS, 2020, 125 (18)
[3]   Quantum-information analysis of electronic states of different molecular structures [J].
Barcza, G. ;
Legeza, Oe ;
Marti, K. H. ;
Reiher, M. .
PHYSICAL REVIEW A, 2011, 83 (01)
[4]   Nonperturbative Shell-Model Interactions from the In-Medium Similarity Renormalization Group [J].
Bogner, S. K. ;
Hergert, H. ;
Holt, J. D. ;
Schwenk, A. ;
Binder, S. ;
Calci, A. ;
Langhammer, J. ;
Roth, R. .
PHYSICAL REVIEW LETTERS, 2014, 113 (14)
[5]  
Bohr A., 1998, NUCL STRUCTURE, V1
[6]   The shell model as a unified view of nuclear structure [J].
Caurier, E ;
Martínez-Pinedo, G ;
Nowacki, F ;
Poves, A ;
Zuker, AP .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :427-488
[7]   Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group [J].
Chan, GKL ;
Head-Gordon, M .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (11) :4462-4476
[8]   Bogoliubov many-body perturbation theory under constraint [J].
Demol, P. ;
Frosini, M. ;
Tichai, A. ;
Soma, V. ;
Duguet, T. .
ANNALS OF PHYSICS, 2021, 424
[9]   Self-consistent Green's function method for nuclei and nuclear matter [J].
Dickhoff, WH ;
Barbieri, C .
PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, VOL 52, NO 2, 2004, 52 (02) :377-496
[10]   Modern theory of nuclear forces [J].
Epelbaum, E. ;
Hammer, H. -W. ;
Meissner, Ulf-G .
REVIEWS OF MODERN PHYSICS, 2009, 81 (04) :1773-1825