RosebudVirt: A High-Performance and Partially Reconfigurable FPGA Virtualization Framework for Multitenant Networks

被引:1
|
作者
Chang, Yiwei [1 ,2 ]
Guo, Zhichuan [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Acoust, Natl Network New Media Engn Res Ctr, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
关键词
Field programmable gate arrays; Virtualization; Hardware; Resource management; Cloud computing; Throughput; Software; Cloud data centers; field-programmable gate array (FPGA) virtualization; multitenant networks; partial reconfiguration (PR); single-root I/O virtualization (SR-IOV);
D O I
10.1109/TVLSI.2024.3436017
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Field-programmable gate arrays (FPGAs) are key accelerators in cloud data centers due to their parallelism and programmability. However, challenges such as low hardware utilization and high virtualization overhead persist. This brief presents RosebudVirt, a high-performance and partially reconfigurable FPGA virtualization framework tailored for multitenant networks. It enhances the original Rosebud by introducing single-root I/O virtualization (SR-IOV) support, partitioning the PCIe-attached FPGA device into multiple physical functions (PFs) and virtual functions (VFs) accessible to the linux kernel via PF and VF drivers. This facilitates direct mapping among tenants, VFs, and reconfigurable packet-processing units (RPUs) within the FPGA. RosebudVirt achieves near-native throughput with < 1% area overhead and increases hardware utilization by up to 7.6 times by additional VF drivers and network interfaces. What is more, RosebudVirt is compatible with Kubernetes and Docker
引用
收藏
页码:298 / 302
页数:5
相关论文
共 45 条
  • [1] A Unified FPGA Virtualization Framework for General-Purpose Deep Neural Networks in the Cloud
    Zeng, Shulin
    Dai, Guohao
    Sun, Hanbo
    Liu, Jun
    Li, Shiyao
    Ge, Guangjun
    Zhong, Kai
    Guo, Kaiyuan
    Wang, Yu
    Yang, Huazhong
    ACM TRANSACTIONS ON RECONFIGURABLE TECHNOLOGY AND SYSTEMS, 2022, 15 (03)
  • [2] OmpSs@FPGA Framework for High Performance FPGA Computing
    Miguel de Haro, Juan
    Bosch, Jaume
    Filgueras, Antonio
    Vidal, Miquel
    Jimenez-Gonzalez, Daniel
    Alvarez, Carlos
    Martorell, Xavier
    Ayguade, Eduard
    Labarta, Jesus
    IEEE TRANSACTIONS ON COMPUTERS, 2021, 70 (12) : 2029 - 2042
  • [3] High-Performance FPGA Implementation of Fully Connected Networks of SAM Neurons
    Farsa, Edris Zaman
    Heidarpur, Moslem
    Ahmadi, Arash
    Mirhassani, Mitra
    2023 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS, 2023,
  • [4] High-Performance of Eigenvalue Decomposition on FPGA for the DOA Estimation
    Zhang, Xiao-Wei
    Yan, Di
    Zuo, Lei
    Li, Ming
    Guo, Jian-Xin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (05) : 5782 - 5797
  • [5] High-Performance Reconfigurable Computer Systems
    Dordopulo, Alexey
    Kalyaev, Igor
    Levin, Ilya
    Slasten, Liubov
    PARALLEL COMPUTING TECHNOLOGIES, 2011, 6873 : 272 - 283
  • [6] The promise of high-performance reconfigurable computing
    El-Ghazawi, Tarek
    El-Araby, Esam
    Huang, Miaoqing
    Gaj, Kris
    Kindratenko, Volodymyr
    Buell, Duncan
    COMPUTER, 2008, 41 (02) : 69 - +
  • [7] High-Performance FPGA Accelerator for SIKE
    El Khatib, Rami
    Azarderakhsh, Reza
    Mozaffari-Kermani, Mehran
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (06) : 1237 - 1248
  • [8] Exploring Infiniband Hardware Virtualization in OpenNebula towards Efficient High-Performance Computing
    Ruivo, Tiago Pais Pitta de Lacerda
    Altayo, Gerard Bernabeu
    Garzoglio, Gabriele
    Timm, Steven
    Kim, Hyun Woo
    Noh, Seo-Young
    Raicu, Ioan
    2014 14TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND GRID COMPUTING (CCGRID), 2014, : 943 - 948
  • [9] High-Performance Computing of Real-Time and Multichannel Histograms: A Full FPGA Approach
    Costa, Andrea
    Corna, Nicola
    Garzetti, Fabio
    Lusardi, Nicola
    Ronconi, Enrico
    Geraci, Angelo
    IEEE ACCESS, 2022, 10 : 47524 - 47540
  • [10] The hybrid reconfigurable system for high-performance computing
    Lyashov, M., V
    Alekseenko, J., V
    Bereza, A. N.
    Blanco, L. M. L.
    2015 9TH INTERNATIONAL CONFERENCE ON APPLICATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES (AICT), 2015, : 258 - 262