Thermoelectric Grain Boundary in Monolayer MoS2

被引:0
|
作者
Irie, Ayu [1 ,2 ,3 ]
Aditya, Anikeya [1 ,2 ]
Nomura, Ken-ichi [1 ,2 ]
Fukushima, Shogo [4 ]
Hattori, Shinnosuke [5 ]
Kalia, Rajiv K. [1 ,2 ]
Nakano, Aiichiro [1 ,2 ]
Rodin, Vadim [6 ]
Shimojo, Fuyuki [3 ]
Tomiya, Shigetaka [5 ,7 ]
Vashishta, Priya [1 ,2 ]
机构
[1] Univ Southern Calif, Dept Chem Engn & Mat Sci, Dept Comp Sci, Collaboratory Adv Comp & Simulat, Los Angeles, CA 90089 USA
[2] Univ Southern Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
[3] Kumamoto Univ, Dept Phys, Kumamoto 8608555, Japan
[4] Tohoku Univ, Inst Mat Res, Sendai 9808577, Japan
[5] Sony Semicond Solut Corp, Atsugi, Kanagawa 2430014, Japan
[6] Sony Europe BV, Sony Semicond Solut Europe, Stuttgart Lab 2, D-70327 Stuttgart, Germany
[7] Nara Inst Sci & Technol, Nara 89165, Japan
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2024年 / 128卷 / 38期
基金
美国国家科学基金会;
关键词
D O I
10.1021/acs.jpcc.4c04339
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Defects such as grain boundaries (GBs) fundamentally control thermal and electrical transport in two-dimensional (2D) transition metal dichalcogenide (TMDC) materials, but the mechanism remains elusive. We have studied thermal and electrical transport across and along the GB within a monolayer of a prototypical TMDC, MoS2, using molecular dynamics simulation and first-principles quantum-mechanical calculation. We found the existence of an interfacial phase (or "interphase") within a few nanometers from the GB, which has anisotropic transport properties that are distinct from those of a perfect crystal. Namely, the GB interphase has reduced thermal conductivity across the GB. In stark contrast, the electrical conductivity of electron-doped MoS2 is enhanced in both directions, with higher conductivity across the GB. These results are understood in terms of the alignment of energy levels and spatial distribution of electronic wave functions around the GB. Such contrasting thermal and electrical transport properties of the GB interphase suggest a promising application of GB superlattices to thermoelectric power regeneration for sustainable future 2D electronics.
引用
收藏
页码:16172 / 16178
页数:7
相关论文
共 50 条
  • [41] Nanoscale enhancement of photoconductivity by localized charge traps in the grain structures of monolayer MoS2
    Myungjae Yang
    Tae-Young Kim
    Takhee Lee
    Seunghun Hong
    Scientific Reports, 8
  • [42] Effect of lattice defects on electronic structure and thermoelectric properties of 2D monolayer MoS2
    Long, Yunshuai
    Li, Fulian
    Ding, Yanwen
    Song, Yumin
    Wei, Liuchuang
    Kang, Kunyong
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2024, 161
  • [43] Charge transfer and magnetization of a MoS2 monolayer at the Co(0001)/MoS2 interface
    Garandel, T.
    Arras, R.
    Marie, X.
    Renucci, P.
    Calmels, L.
    8TH JOINT EUROPEAN MAGNETIC SYMPOSIA (JEMS2016), 2017, 903
  • [44] Nature of point defects in monolayer MoS2 and the MoS2/Au(111) heterojunction
    Anvari, Roozbeh
    Wang, Wennie
    JOURNAL OF APPLIED PHYSICS, 2024, 135 (17)
  • [45] Growth of Monolayer MoS2 on Hydrophobic Substrates as a Novel and Feasible Method to Prevent the Ambient Degradation of Monolayer MoS2
    Kevin Yao
    Dave Banerjee
    John D. Femi-Oyetoro
    Evan Hathaway
    Yan Jiang
    Brian Squires
    Daniel C. Jones
    Arup Neogi
    Jingbiao Cui
    Usha Philipose
    Aryan Agarwal
    Ernest Lu
    Steven Yao
    Mihir Khare
    Ibikunle A. Ojo
    Gage Marshall
    Jose Perez
    MRS Advances, 2020, 5 : 2707 - 2715
  • [46] Phonon-drag thermopower and thermoelectric performance of MoS2 monolayer in quantizing magnetic field
    Phuc, Huynh, V
    Kubakaddi, S. S.
    Dinh, Le
    Bich, Tran N.
    Hieu, Nguyen N.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (31)
  • [47] Compressive strain induced enhancement in thermoelectric-power-factor in monolayer MoS2 nanosheet
    Dimple, Nityasagar Jena
    De Sarkar, Abir
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (22)
  • [48] Kinetic Nature of Grain Boundary Formation in As-Grown MoS2 Monolayers
    Cheng, Jingxin
    Jiang, Tao
    Ji, Qingqing
    Zhang, Yu
    Li, Zhiming
    Shan, Yuwei
    Zhang, Yanfeng
    Gong, Xingao
    Liu, Weitao
    Wu, Shiwei
    ADVANCED MATERIALS, 2015, 27 (27) : 4069 - 4074
  • [49] Growth of Monolayer MoS2 on Hydrophobic Substrates as a Novel and Feasible Method to Prevent the Ambient Degradation of Monolayer MoS2
    Yao, Kevin
    Banerjee, Dave
    Femi-Oyetoro, John D.
    Hathaway, Evan
    Jiang, Yan
    Squires, Brian
    Jones, Daniel C.
    Neogi, Arup
    Cui, Jingbiao
    Philipose, Usha
    Agarwal, Aryan
    Lu, Ernest
    Yao, Steven
    Khare, Mihir
    Ojo, Ibikunle A.
    Marshall, Gage
    Perez, Jose
    MRS ADVANCES, 2020, 5 (52-53) : 2707 - 2715
  • [50] Temperature-Dependent Thermal Boundary Conductance of Monolayer MoS2 by Raman Thermometry
    Yalon, Eilam
    Aslan, Ozgur Burak
    Smithe, Kirby K. H.
    McClellan, Connor J.
    Suryavanshi, Saurabh V.
    Xiong, Feng
    Sood, Aditya
    Neumann, Christopher M.
    Xu, Xiaoqing
    Goodson, Kenneth E.
    Heinz, Tony F.
    Pop, Eric
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (49) : 43013 - 43020