Thermoelectric Grain Boundary in Monolayer MoS2

被引:0
|
作者
Irie, Ayu [1 ,2 ,3 ]
Aditya, Anikeya [1 ,2 ]
Nomura, Ken-ichi [1 ,2 ]
Fukushima, Shogo [4 ]
Hattori, Shinnosuke [5 ]
Kalia, Rajiv K. [1 ,2 ]
Nakano, Aiichiro [1 ,2 ]
Rodin, Vadim [6 ]
Shimojo, Fuyuki [3 ]
Tomiya, Shigetaka [5 ,7 ]
Vashishta, Priya [1 ,2 ]
机构
[1] Univ Southern Calif, Dept Chem Engn & Mat Sci, Dept Comp Sci, Collaboratory Adv Comp & Simulat, Los Angeles, CA 90089 USA
[2] Univ Southern Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
[3] Kumamoto Univ, Dept Phys, Kumamoto 8608555, Japan
[4] Tohoku Univ, Inst Mat Res, Sendai 9808577, Japan
[5] Sony Semicond Solut Corp, Atsugi, Kanagawa 2430014, Japan
[6] Sony Europe BV, Sony Semicond Solut Europe, Stuttgart Lab 2, D-70327 Stuttgart, Germany
[7] Nara Inst Sci & Technol, Nara 89165, Japan
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2024年 / 128卷 / 38期
基金
美国国家科学基金会;
关键词
D O I
10.1021/acs.jpcc.4c04339
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Defects such as grain boundaries (GBs) fundamentally control thermal and electrical transport in two-dimensional (2D) transition metal dichalcogenide (TMDC) materials, but the mechanism remains elusive. We have studied thermal and electrical transport across and along the GB within a monolayer of a prototypical TMDC, MoS2, using molecular dynamics simulation and first-principles quantum-mechanical calculation. We found the existence of an interfacial phase (or "interphase") within a few nanometers from the GB, which has anisotropic transport properties that are distinct from those of a perfect crystal. Namely, the GB interphase has reduced thermal conductivity across the GB. In stark contrast, the electrical conductivity of electron-doped MoS2 is enhanced in both directions, with higher conductivity across the GB. These results are understood in terms of the alignment of energy levels and spatial distribution of electronic wave functions around the GB. Such contrasting thermal and electrical transport properties of the GB interphase suggest a promising application of GB superlattices to thermoelectric power regeneration for sustainable future 2D electronics.
引用
收藏
页码:16172 / 16178
页数:7
相关论文
共 50 条
  • [31] Monolayer MoS2 for nanoscale photonics
    Yang, Xianguang
    Li, Baojun
    NANOPHOTONICS, 2020, 9 (07) : 1557 - 1577
  • [32] Adsorption of radionuclides on the monolayer MoS2
    Zhao, Qiang
    Zhang, Zheng
    Ouyang, Xiaoping
    MATERIALS RESEARCH EXPRESS, 2018, 5 (04):
  • [33] Nanoindentation on Monolayer MoS2 Kirigami
    Wang, Beibei
    Nakano, Aiichiro
    Vashishta, Priya D.
    Kalia, Rajiv K.
    ACS OMEGA, 2019, 4 (06): : 9952 - 9956
  • [34] Andreev reflection in monolayer MoS2
    Majidi, Leyla
    Rostami, Habib
    Asgari, Reza
    PHYSICAL REVIEW B, 2014, 89 (04)
  • [35] Conduction quantization in monolayer MoS2
    Li, T. S.
    CHEMICAL PHYSICS LETTERS, 2016, 663 : 40 - 44
  • [36] Emerging Photoluminescence in Monolayer MoS2
    Splendiani, Andrea
    Sun, Liang
    Zhang, Yuanbo
    Li, Tianshu
    Kim, Jonghwan
    Chim, Chi-Yung
    Galli, Giulia
    Wang, Feng
    NANO LETTERS, 2010, 10 (04) : 1271 - 1275
  • [37] Terahertz conductivity of monolayer MoS2
    Mitra, S.
    Avazpour, L.
    Knezevic, I.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2023, 22 (05) : 1319 - 1326
  • [38] Unconventional electroabsorption in monolayer MoS2
    Vella, D.
    Ovchinnikov, D.
    Martino, N.
    Vega-Mayoral, V.
    Dumcenco, D.
    Kung, Y-C
    Antognazza, M-R
    Kis, A.
    Lanzani, G.
    Mihailovic, D.
    Gadermaier, C.
    2D MATERIALS, 2017, 4 (02):
  • [39] Local photodoping in monolayer MoS2
    Gadelha, Andreij C.
    Cadore, Alisson R.
    Lafeta, Lucas
    de Paula, Ana M.
    Malard, Leandro M.
    Lacerda, Rodrigo G.
    Campos, Leonardo C.
    NANOTECHNOLOGY, 2020, 31 (25)
  • [40] Nanoscale enhancement of photoconductivity by localized charge traps in the grain structures of monolayer MoS2
    Yang, Myungjae
    Kim, Tae-Young
    Lee, Takhee
    Hong, Seunghun
    SCIENTIFIC REPORTS, 2018, 8