Hierarchical Federated Learning in Wireless Networks: Pruning Tackles Bandwidth Scarcity and System Heterogeneity

被引:1
作者
Pervej, Md Ferdous [1 ,2 ]
Jin, Richeng [3 ,4 ,5 ]
Dai, Huaiyu [1 ]
机构
[1] North Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA
[2] Univ Southern Calif, Ming Hsieh Dept Elect & Comp Engn, Los Angeles, CA 90089 USA
[3] University, Coll Informat Sci & Elect Engn, Zhejiang Singapore Innovat & AI Joint Res Lab, Hangzhou 310027, Peoples R China
[4] Zhejiang Univ, Zhejiang Singapore Innovat & AI Joint Res Lab, Hangzhou 310027, Peoples R China
[5] Zhejiang Prov Key Lab Informat Proc Commun & Netwo, Hangzhou 310000, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Servers; Training; Computational modeling; Convergence; Wireless networks; Adaptation models; Resource management; Heterogeneous network; hierarchical federated learning; model pruning; resource management; RESOURCE-ALLOCATION; OPTIMIZATION; DESIGN;
D O I
10.1109/TWC.2024.3382093
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
While a practical wireless network has many tiers where end users do not directly communicate with the central server, the users' devices have limited computation and battery powers, and the serving base station (BS) has a fixed bandwidth. Owing to these practical constraints and system models, this paper leverages model pruning and proposes a pruning-enabled hierarchical federated learning (PHFL) in heterogeneous networks (HetNets). We first derive an upper bound of the convergence rate that clearly demonstrates the impact of the model pruning and wireless communications between the clients and the associated BS. Then we jointly optimize the model pruning ratio, central processing unit (CPU) frequency and transmission power of the clients in order to minimize the controllable terms of the convergence bound under strict delay and energy constraints. However, since the original problem is not convex, we perform successive convex approximation (SCA) and jointly optimize the parameters for the relaxed convex problem. Through extensive simulation, we validate the effectiveness of our proposed PHFL algorithm in terms of test accuracy, wall clock time, energy consumption and bandwidth requirement.
引用
收藏
页码:11417 / 11432
页数:16
相关论文
共 50 条
  • [41] Joint User Association and Resource Allocation for Wireless Hierarchical Federated Learning With IID and Non-IID Data
    Liu, Shengli
    Yu, Guanding
    Chen, Xianfu
    Bennis, Mehdi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (10) : 7852 - 7866
  • [42] Joint Client Selection and Bandwidth Allocation of Wireless Federated Learning by Deep Reinforcement Learning
    Mao, Wei
    Lu, Xingjian
    Jiang, Yuhui
    Zheng, Haikun
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2024, 17 (01) : 336 - 348
  • [43] Semi-Asynchronous Hierarchical Federated Learning Over Mobile Edge Networks
    Chen, Qimei
    You, Zehua
    Wu, Jing
    Liu, Yunpeng
    Jiang, Hao
    IEEE ACCESS, 2023, 11 : 18887 - 18899
  • [44] Intelligent Reflecting Surface-Assisted Low-Latency Federated Learning Over Wireless Networks
    Mao, Sun
    Liu, Lei
    Zhang, Ning
    Hu, Jie
    Yang, Kun
    Yu, F. Richard
    Leung, Victor C. M.
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (02): : 1223 - 1235
  • [45] On the Optimization of UAV-Assisted Wireless Networks for Hierarchical Federated Learning
    Khelf, Roumaissa
    Driouch, Elmahdi
    Ajib, Wessam
    2023 IEEE 34TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, PIMRC, 2023,
  • [46] Time efficient joint optimization federated learning over wireless communication networks
    Sun, Junshuai
    Wang, Yingying
    Sun, Xin
    Li, Na
    Nie, Gaofeng
    CHINA COMMUNICATIONS, 2022, 19 (06) : 169 - 178
  • [47] Convergence Analysis and System Design for Federated Learning Over Wireless Networks
    Wan, Shuo
    Lu, Jiaxun
    Fan, Pingyi
    Shao, Yunfeng
    Peng, Chenghui
    Letaief, Khaled B.
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (12) : 3622 - 3639
  • [48] Joint Device Scheduling and Bandwidth Allocation for Federated Learning Over Wireless Networks
    Zhang, Tinghao
    Lam, Kwok-Yan
    Zhao, Jun
    Feng, Jie
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2025, 24 (01) : 3 - 18
  • [49] Adaptive Model Pruning and Personalization for Federated Learning Over Wireless Networks
    Liu, Xiaonan
    Ratnarajah, Tharmalingam
    Sellathurai, Mathini
    Eldar, Yonina C.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 4395 - 4411
  • [50] Mobility Accelerates Learning: Convergence Analysis on Hierarchical Federated Learning in Vehicular Networks
    Chen, Tan
    Yan, Jintao
    Sun, Yuxuan
    Zhou, Sheng
    Gunduz, Deniz
    Niu, Zhisheng
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (01) : 1657 - 1673