Influence of Current Collector Design and Combination on the Performance of Passive Direct Methanol Fuel Cells

被引:1
作者
Yu, Weibin [1 ]
Xiao, Zhiyuan [1 ]
Zhang, Weiqi [1 ]
Ma, Qiang [1 ]
Li, Zhuo [1 ]
Yan, Xiaohui [2 ]
Su, Huaneng [1 ]
Xing, Lei [3 ]
Xu, Qian [1 ,4 ]
机构
[1] Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200030, Peoples R China
[3] Univ Surrey, Dept Chem & Proc Engn, Guildford GU2 7XH, England
[4] Wuxi Vocat Inst Commerce, Jiangsu Prov Engn Res Ctr Key Components New Energ, Wuxi 214153, Peoples R China
关键词
direct methanol fuel cell; passive mode; methanol crossover; current collector; IN-SITU; DMFC; ANODE; FIELD;
D O I
10.3390/catal14090632
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, an anode current collector with a scaled step-hole structure (called SF-type) and a cathode current collector with a perforated cross-tilt structure (called X-type) were designed and fabricated for application in passive direct methanol fuel cells (DMFCs). A whole-cell test showed that the combination of an anode SF-type current collector and cathode conventional current collector increased the optimal methanol concentration from 6 M to 8 M and the maximum power density to 5.40 mW cm-2, which improved the cell performance by 51.6% compared to that of the conventional design under ambient testing conditions. The combination of the anode conventional current collector and cathode X-type current collector achieved a maximum power density of 5.65 mW cm-2 with a 58.7% performance improvement, while the optimal methanol concentration was increased to 10 M. Furthermore, the combination of anode SF-type and cathode X-type obtained the highest power density at 6.22 mW cm-2. Notably, the anode and cathode catalyst loadings used in this study were 2.0 mg cm-2, which is lower than the commonly used loading, thus reducing the fuel cell cost.
引用
收藏
页数:14
相关论文
共 32 条
[1]   Structural mechanism investigation on methanol crossover and stability of a passive direct methanol fuel cell performance via modified micro-porous layer [J].
Alias, M. S. ;
Kamarudin, S. K. ;
Zainoodin, A. M. ;
Masdar, M. S. .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (09) :12928-12943
[2]   Active direct methanol fuel cell: An overview [J].
Alias, M. S. ;
Kamarudin, S. K. ;
Zainoodin, A. M. ;
Masdar, M. S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (38) :19620-19641
[3]   Optimization of a passive direct methanol fuel cell with different current collector materials [J].
Braz, B. A. ;
Oliveira, V. B. ;
Pinto, A. M. F. R. .
ENERGY, 2020, 208
[4]   Effect of the current collector design on the performance of a passive direct methanol fuel cell [J].
Braz, B. A. ;
Moreira, C. S. ;
Oliveira, V. B. ;
Pinto, A. M. F. R. .
ELECTROCHIMICA ACTA, 2019, 300 :306-315
[5]   A combined in-situ and post-mortem investigation on local permanent degradation in a direct methanol fuel cell [J].
Bresciani, F. ;
Rabissi, C. ;
Zago, M. ;
Gazdzicki, P. ;
Schulze, M. ;
Guetaz, L. ;
Escribano, S. ;
Bonde, J. L. ;
Marchesi, R. ;
Casalegno, A. .
JOURNAL OF POWER SOURCES, 2016, 306 :49-61
[6]   An all-in-one approach for self-powered sensing: A methanol fuel cell modified with a molecularly imprinted polymer for cancer biomarker detection [J].
Carneiro, Liliana P. T. ;
Pinto, Alexandra M. F. R. ;
Mendes, Adelio ;
Sales, M. Goreti F. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 906
[7]   A passive direct methanol fuel cell as transducer of an electrochemical sensor, applied to the detection of carcinoembryonic antigen [J].
Carneiro, Liliana P. T. ;
Ferreira, Nadia S. ;
Tavares, Ana P. M. ;
Pinto, Alexandra M. F. R. ;
Mendes, Adelio ;
Sales, M. Goreti F. .
BIOSENSORS & BIOELECTRONICS, 2021, 175
[8]   A small mono-polar direct methanol fuel cell stack with passive operation [J].
Chan, Y. H. ;
Zhao, T. S. ;
Chen, R. ;
Xu, C. .
JOURNAL OF POWER SOURCES, 2008, 178 (01) :118-124
[9]   Passive direct methanol fuel cells as a sustainable alternative to batteries in hearing aid devices- An overview [J].
de Sa, M. H. ;
Pinto, A. M. F. R. ;
Oliveira, V. B. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (37) :16552-16567
[10]   Fabrication of Electrochemically Reduced Graphene Oxide Modified Gas Diffusion Electrode for In-situ Electrochemical Advanced Oxidation Process under Mild Conditions [J].
Dong, Heng ;
Su, Huimin ;
Chen, Ze ;
Yu, Han ;
Yu, Hongbing .
ELECTROCHIMICA ACTA, 2016, 222 :1501-1509