Explainable AI-based Shapley Additive Explanations for Remaining Useful Life Prediction using NASA Turbofan Engine Dataset

被引:1
作者
Seebold, Patrick [1 ]
Kaye, Murali Krishna [2 ]
Kim, Sangyeon [3 ]
Nam, Chang S. [4 ]
机构
[1] North Carolina State Unvers, Dept Psychol, Raleigh, NC 27695 USA
[2] Kettering Univ, Dept Comp Sci, Flint, MI USA
[3] Korea Univ, Inst Engn Res, Seoul, South Korea
[4] Kettering Univ, Dept Ind & Mfg Engn, Flint, MI USA
来源
2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024 | 2024年
关键词
Explainable AI; SHAP; Remaining Useful Life; Predictive Maintenance;
D O I
10.1109/ICMI60790.2024.10586061
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Artificial intelligence (AI) models can provide valuable predictions of remaining useful life (RUL), but it is difficult to understand how these 'black box' models come to their conclusions. Explainable AI (XAI) seeks ways to make the inner workings of these models more understandable, which in turn may assist in system development and adoption. Here we use SHAP analyses to visualize and interpret interactions between top performing parameters in a high-accuracy neural network model of RUL in a simulated fleet of NASA turbojet engines. Our analyses reveal complex relationships between even the best performing parameters and demonstrate a method for increasing explainability of an AI model by decomposing parameter relationships to better understand how parameter interactions influence model performance.
引用
收藏
页数:5
相关论文
共 13 条
  • [1] Predictive Maintenance and Fault Monitoring Enabled by Machine Learning: Experimental Analysis of a TA-48 Multistage Centrifugal Plant Compressor
    Achouch, Mounia
    Dimitrova, Mariya
    Dhouib, Rizck
    Ibrahim, Hussein
    Adda, Mehdi
    Sattarpanah Karganroudi, Sasan
    Ziane, Khaled
    Aminzadeh, Ahmad
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [2] Bahmanziari T, 2003, J COMPUT INFORM SYST, V43, P46
  • [3] Chang Woo Hong, 2020, Proceedings of the 3rd IEEE International Conference on Knowledge Innovation and Invention (ICKII 2020), P144, DOI 10.1109/ICKII50300.2020.9318912
  • [4] Monitoring and Predictive Maintenance of Centrifugal Pumps Based on Smart Sensors
    Chen, Lei
    Wei, Lijun
    Wang, Yu
    Wang, Junshuo
    Li, Wenlong
    [J]. SENSORS, 2022, 22 (06)
  • [5] Dogga B., AIAA SCITECH 2024 FO, DOI [10.2514/6.2024-2530, DOI 10.2514/6.2024-2530]
  • [6] Explainable AI (XAI): Core Ideas, Techniques, and Solutions
    Dwivedi, Rudresh
    Dave, Devam
    Naik, Het
    Singhal, Smiti
    Omer, Rana
    Patel, Pankesh
    Qian, Bin
    Wen, Zhenyu
    Shah, Tejal
    Morgan, Graham
    Ranjan, Rajiv
    [J]. ACM COMPUTING SURVEYS, 2023, 55 (09)
  • [7] Frederick D. K., 2007, User ' s guide for the commercial modular aero-propulsion system simulation (C-MAPSS)
  • [8] Ignizio J. P., 2010, Phalanx, V43, P17
  • [9] MACHINE PERFORMANCE MONITORING AND PROACTIVE MAINTENANCE IN COMPUTER-INTEGRATED MANUFACTURING - REVIEW AND PERSPECTIVE
    LEE, J
    [J]. INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 1995, 8 (05) : 370 - 380
  • [10] Lundberg SM, 2017, ADV NEUR IN, V30