A general framework for multi-step ahead adaptive conformal heteroscedastic time series forecasting

被引:1
|
作者
Sousa, Martim [1 ]
Tome, Ana Maria [1 ]
Moreira, Jose [1 ]
机构
[1] Univ Aveiro, IEETA, DETI, P-3810193 Aveiro, Portugal
关键词
Conformal prediction; Conformalized quantile regression; Conformal time series forecasting; Distribution shift; Multi-step ahead forecasting; PREDICTION INTERVALS;
D O I
10.1016/j.neucom.2024.128434
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a novel model-agnostic algorithm called adaptive ensemble batch multi-input multi- output conformalized quantile regression (AEnbMIMOCQR) that enables forecasters to generate multi-step ahead prediction intervals for a fixed pre-specified miscoverage rate alpha in a distribution-free manner. Our method is grounded on conformal prediction principles, however, it does not require data splitting and provides close to exact coverage even when the data is not exchangeable. Moreover, the resulting prediction intervals, besides being empirically valid along the forecast horizon, do not neglect heteroscedasticity. AEnbMIMOCQR is designed to be robust to distribution shifts, which means that its prediction intervals remain reliable over an unlimited period of time, without entailing retraining or imposing unrealistic strict assumptions on the data-generating process. Through methodically experimentation, we demonstrate that our approach outperforms other competitive methods on both real-world and synthetic datasets. The code used in the experimental part and a tutorial on how to use AEnbMIMOCQR can be found at the following GitHub repository: https://github.com/Quilograma/AEnbMIMOCQR.
引用
收藏
页数:12
相关论文
共 45 条
  • [21] Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices
    Xiong, Tao
    Bao, Yukun
    Hu, Zhongyi
    ENERGY ECONOMICS, 2013, 40 : 405 - 415
  • [22] Pairs trading and outranking: The multi-step-ahead forecasting case
    Huck, Nicolas
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 207 (03) : 1702 - 1716
  • [23] A Bias and Variance Analysis for Multistep-Ahead Time Series Forecasting
    Ben Taieb, Souhaib
    Atiya, Amir F.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (01) : 62 - 76
  • [24] Modified nearest neighbor method for multistep ahead time series forecasting
    Abbas, Syed Rahat
    Arif, Muhammad
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2007, 21 (03) : 463 - 481
  • [25] Multi-step ahead forecasting of regional air quality using spatial-temporal deep neural networks: A case study of Huaihai Economic Zone
    Zhang, Kefei
    The, Jesse
    Xie, Guangyuan
    Yu, Hesheng
    JOURNAL OF CLEANER PRODUCTION, 2020, 277
  • [26] Multi-Step-Ahead Forecasting of Groundwater Level Using Model Ensemble Technique
    Nourani, Vahid
    Ghaneei, Parnian
    Sharghi, Elnaz
    PROCEEDINGS OF 7TH INTERNATIONAL CONFERENCE ON HARMONY SEARCH, SOFT COMPUTING AND APPLICATIONS (ICHSA 2022), 2022, 140 : 247 - 257
  • [27] Multi-Step-Ahead Monthly Streamflow Forecasting Using Convolutional Neural Networks
    Shu, Xingsheng
    Peng, Yong
    Ding, Wei
    Wang, Ziru
    Wu, Jian
    WATER RESOURCES MANAGEMENT, 2022, 36 (11) : 3949 - 3964
  • [28] Multi Step Ahead Forecasting of Wind Power by Genetic Algorithm based Neural Networks
    Saroha, Sumit
    Aggarwal, S. K.
    2014 6th IEEE Power India International Conference (PIICON), 2014,
  • [29] Multi-Step-Ahead Monthly Streamflow Forecasting Using Convolutional Neural Networks
    Xingsheng Shu
    Yong Peng
    Wei Ding
    Ziru Wang
    Jian Wu
    Water Resources Management, 2022, 36 : 3949 - 3964
  • [30] Multi-step carbon price forecasting based on a new quadratic decomposition ensemble learning approach
    Zhang, Tingting
    Tang, Zhenpeng
    FRONTIERS IN ENERGY RESEARCH, 2023, 10