A general framework for multi-step ahead adaptive conformal heteroscedastic time series forecasting

被引:1
|
作者
Sousa, Martim [1 ]
Tome, Ana Maria [1 ]
Moreira, Jose [1 ]
机构
[1] Univ Aveiro, IEETA, DETI, P-3810193 Aveiro, Portugal
关键词
Conformal prediction; Conformalized quantile regression; Conformal time series forecasting; Distribution shift; Multi-step ahead forecasting; PREDICTION INTERVALS;
D O I
10.1016/j.neucom.2024.128434
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a novel model-agnostic algorithm called adaptive ensemble batch multi-input multi- output conformalized quantile regression (AEnbMIMOCQR) that enables forecasters to generate multi-step ahead prediction intervals for a fixed pre-specified miscoverage rate alpha in a distribution-free manner. Our method is grounded on conformal prediction principles, however, it does not require data splitting and provides close to exact coverage even when the data is not exchangeable. Moreover, the resulting prediction intervals, besides being empirically valid along the forecast horizon, do not neglect heteroscedasticity. AEnbMIMOCQR is designed to be robust to distribution shifts, which means that its prediction intervals remain reliable over an unlimited period of time, without entailing retraining or imposing unrealistic strict assumptions on the data-generating process. Through methodically experimentation, we demonstrate that our approach outperforms other competitive methods on both real-world and synthetic datasets. The code used in the experimental part and a tutorial on how to use AEnbMIMOCQR can be found at the following GitHub repository: https://github.com/Quilograma/AEnbMIMOCQR.
引用
收藏
页数:12
相关论文
共 45 条
  • [1] Adaptive Conformal Inference for Multi-Step Ahead Time-Series Forecasting Online
    Szabadvary, Johan Hallberg
    13TH SYMPOSIUM ON CONFORMAL AND PROBABILISTIC PREDICTION WITH APPLICATIONS, 2024, 230 : 250 - 263
  • [2] A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition
    Ben Taieb, Souhaib
    Bontempi, Gianluca
    Atiya, Amir F.
    Sorjamaa, Antti
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (08) : 7067 - 7083
  • [3] Time Series Forecasting of Univariate Agrometeorological Data: A Comparative Performance Evaluation via One-Step and Multi-Step Ahead Forecasting Strategies
    Suradhaniwar, Saurabh
    Kar, Soumyashree
    Durbha, Surya S.
    Jagarlapudi, Adinarayana
    SENSORS, 2021, 21 (07)
  • [4] A nonparametric method of multi-step ahead forecasting in diffusion processes
    Yamamura, Mariko
    Shoji, Isao
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (12) : 2408 - 2415
  • [5] Factor-Based Framework for Multivariate and Multi-step-ahead Forecasting of Large Scale Time Series
    De Stefani, Jacopo
    Bontempi, Gianluca
    FRONTIERS IN BIG DATA, 2021, 4
  • [6] Conformal Multistep-Ahead Multivariate Time-Series Forecasting
    Schlembach, Filip
    Smirnov, Evgueni
    Koprinska, Irena
    CONFORMAL AND PROBABILISTIC PREDICTION WITH APPLICATIONS, VOL 179, 2022, 179
  • [7] Multi-step Ahead Forecasting for Fault Prognosis Using Hidden Markov Model
    Cao, Lili
    Fang, Huajing
    Liu, Xiaoyong
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 1688 - 1692
  • [8] Multi-step-ahead time series forecasting based on CEEMDAN decomposition and temporal convolutional networks
    Ha Binh Minh
    Nguyen Hoang An
    Nguyen Minh Tuan
    2022 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING AND ANALYTICS (ACOMPA), 2022, : 54 - 59
  • [9] Implement multi-step-ahead forecasting with multi-point association fuzzy logical relationship for time series
    Li, Fang
    Zhang, Lihua
    Wang, Xiao
    Liu, Shihu
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (03) : 2023 - 2039
  • [10] Multi-step time series prediction intervals using neuroevolution
    Cortez, Paulo
    Pereira, Pedro Jose
    Mendes, Rui
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (13) : 8939 - 8953