Analog Features Extractor for Ultra-Low Power Embedded AI Listening and Keyword Spotting

被引:0
|
作者
Marzetti, Sebastian [1 ,3 ]
Gies, Valentin [1 ,3 ]
Barchasz, Valentin [1 ,3 ]
Barthelemy, Herve [1 ,3 ]
Glotin, Herve [2 ,3 ]
机构
[1] Aix Marseille Univ, Univ Toulon, IM2NP, CNRS,UMR 7334, Marseille, France
[2] Aix Marseille Univ, Univ Toulon, CNRS, LIS,DYNI, Marseille, France
[3] Univ Toulon & Var, Ctr Intelligence Artificielle Acoust Nat, Toulon, France
来源
2024 IEEE 6TH INTERNATIONAL CONFERENCE ON AI CIRCUITS AND SYSTEMS, AICAS 2024 | 2024年
关键词
Ultra Low-Power; Keyword Spotting; Signal Processing; Embedded System; Mixed signal processing; Analog; Digital; Embedded Artificial Intelligence; Machine Learning; Voice Detection; Long Term Monitoring; Soundscape Monitoring; NEURAL-NETWORK; CHIP;
D O I
10.1109/AICAS59952.2024.10595968
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a novel ultra-low power audio system is designed and tested on keyword spotting (KWS). It implements mixed (analog-digital) processing and allows always-on detection with an average power consumption of < 77 mu W, detecting one word every 30 seconds. Combining mixed signal processing, it achieves 88% classification accuracy between 8 classes. It is based on an always-on Analog Features Extractor (AFE), which provides spectral information, and main processor wakes-up only when necessary for minimal power consumption. Then, this information is sampled by a low frequency ADC to compose a spectrogram processed with a Convolutional Neural Network (CNN) for classification. It can be used for long term environmental monitoring or intelligent Internet of Things (IoT) using small batteries such as a single CR2032 coin cell to reach up to 1 year of autonomy.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [21] PULP: A Ultra-Low Power Parallel Accelerator for Energy-Efficient and Flexible Embedded Vision
    Conti, Francesco
    Rossi, Davide
    Pullini, Antonio
    Loi, Igor
    Benini, Luca
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2016, 84 (03): : 339 - 354
  • [22] Ultra-Low Power Green Electronic Devices
    Yi, S. H.
    Chin, Albert
    PROCEEDINGS OF THE 2015 IEEE INTERNATIONAL CONFERENCE ON ELECTRON DEVICES AND SOLID-STATE CIRCUITS (EDSSC), 2015, : 285 - 288
  • [23] Challenges in Designing Ultra-Low Power VCO
    Walunj, R. A.
    Kafeel, Mohd. Ajmal
    Pable, S. D.
    Kharate, G. K.
    JOURNAL OF ACTIVE AND PASSIVE ELECTRONIC DEVICES, 2019, 14 (04): : 329 - 341
  • [24] Subthreshold analog performance of channel engineered SOICMOS devices and circuits for ultra-low power analog/mixed-signal applications
    Chakraborty, S.
    Mallik, A.
    Sarkar, C. K.
    PROCEEDINGS OF THE 2007 INTERNATIONAL WORKSHOP ON THE PHYSICS OF SEMICONDUCTOR DEVICES: IWPSD-2007, 2007, : 150 - +
  • [25] A novel power optimization technique for ultra-low power RFICs
    Shameli, Amin
    Heydari, Payam
    ISLPED '06: PROCEEDINGS OF THE 2006 INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN, 2006, : 274 - 279
  • [26] Ultra-Low Power Read-Decoupled SRAMs with Ultra-Low Write-Bitline Voltage Swing
    Chen, Junchao
    Chong, Kwen-Siong
    Gwee, Bah-Hwee
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2014, 33 (10) : 3317 - 3329
  • [27] Ultra-Low Power Read-Decoupled SRAMs with Ultra-Low Write-Bitline Voltage Swing
    Junchao Chen
    Kwen-Siong Chong
    Bah-Hwee Gwee
    Circuits, Systems, and Signal Processing, 2014, 33 : 3317 - 3329
  • [28] An Ultra-Low Power CMOS LNA for WPAN Applications
    Liu, Hang-Ji
    Zhang, Zhao-Feng
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2017, 27 (02) : 174 - 176
  • [29] An Ultra-Low Power CMOS Subthreshold Voltage Reference
    Luo, Yunling
    Zhang, Jun
    Wang, Qiaobo
    Zeng, Yanhang
    Hu, Jianguo
    Tan, Hong-Zhou
    2012 IEEE INTERNATIONAL CONFERENCE ON ELECTRON DEVICES AND SOLID STATE CIRCUIT (EDSSC), 2012,
  • [30] Low-Power Feature-Attention Chinese Keyword Spotting Framework with Distillation Learning
    Lei, Lei
    Yuan, Guoshun
    Zhang, Tianle
    Yu, Hongjiang
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2023, 22 (02)