Analog Features Extractor for Ultra-Low Power Embedded AI Listening and Keyword Spotting

被引:0
|
作者
Marzetti, Sebastian [1 ,3 ]
Gies, Valentin [1 ,3 ]
Barchasz, Valentin [1 ,3 ]
Barthelemy, Herve [1 ,3 ]
Glotin, Herve [2 ,3 ]
机构
[1] Aix Marseille Univ, Univ Toulon, IM2NP, CNRS,UMR 7334, Marseille, France
[2] Aix Marseille Univ, Univ Toulon, CNRS, LIS,DYNI, Marseille, France
[3] Univ Toulon & Var, Ctr Intelligence Artificielle Acoust Nat, Toulon, France
来源
2024 IEEE 6TH INTERNATIONAL CONFERENCE ON AI CIRCUITS AND SYSTEMS, AICAS 2024 | 2024年
关键词
Ultra Low-Power; Keyword Spotting; Signal Processing; Embedded System; Mixed signal processing; Analog; Digital; Embedded Artificial Intelligence; Machine Learning; Voice Detection; Long Term Monitoring; Soundscape Monitoring; NEURAL-NETWORK; CHIP;
D O I
10.1109/AICAS59952.2024.10595968
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a novel ultra-low power audio system is designed and tested on keyword spotting (KWS). It implements mixed (analog-digital) processing and allows always-on detection with an average power consumption of < 77 mu W, detecting one word every 30 seconds. Combining mixed signal processing, it achieves 88% classification accuracy between 8 classes. It is based on an always-on Analog Features Extractor (AFE), which provides spectral information, and main processor wakes-up only when necessary for minimal power consumption. Then, this information is sampled by a low frequency ADC to compose a spectrogram processed with a Convolutional Neural Network (CNN) for classification. It can be used for long term environmental monitoring or intelligent Internet of Things (IoT) using small batteries such as a single CR2032 coin cell to reach up to 1 year of autonomy.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [1] Time-Delay-Neural-Network-Based Audio Feature Extractor for Ultra-Low Power Keyword Spotting
    Fuketa, Hiroshi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (02) : 334 - 338
  • [2] A low power keyword spotting algorithm for memory constrained embedded systems
    Benelli, Gionata
    Meoni, Gabriele
    Fanucci, Luca
    PROCEEDINGS OF THE 2018 26TH IFIP/IEEE INTERNATIONAL CONFERENCE ON VERY LARGE SCALE INTEGRATION (VLSI-SOC), 2018, : 267 - 272
  • [3] Ultra-low Power Embedded Unsupervised Learning Smart Sensor for Industrial Fault Classification
    Gies, Valentin
    Marzetti, Sebastian
    Barchasz, Valentin
    Barthelemy, Herve
    Glotin, Herve
    2020 IEEE INTERNATIONAL CONFERENCE ON INTERNET OF THINGS AND INTELLIGENCE SYSTEM (IOTAIS), 2021, : 181 - 187
  • [4] An Ultra-Low Power Always-On Keyword Spotting Accelerator Using Quantized Convolutional Neural Network and Voltage-Domain Analog Switching Network-Based Approximate Computing
    Liu, Bo
    Wang, Zhen
    Zhu, Wentao
    Sun, Yuhao
    Shen, Zeyu
    Huang, Lepeng
    Li, Yan
    Gong, Yu
    Ge, Wei
    IEEE ACCESS, 2019, 7 : 186456 - 186469
  • [5] Embedded memory options for ultra-low power IoT devices
    Mohammad, Khader
    Tekeste, Temesghen
    Mohammad, Baker
    Saleh, Hani
    Qurran, Mahran
    MICROELECTRONICS JOURNAL, 2019, 93
  • [6] Low-Power Audio Keyword Spotting Using Tsetlin Machines
    Lei, Jie
    Rahman, Tousif
    Shafik, Rishad
    Wheeldon, Adrian
    Yakovlev, Alex
    Granmo, Ole-Christoffer
    Kawsar, Fahim
    Mathur, Akhil
    JOURNAL OF LOW POWER ELECTRONICS AND APPLICATIONS, 2021, 11 (02)
  • [7] On-Device Domain Learning for Keyword Spotting on Low-Power Extreme Edge Embedded Systems
    Cioflan, Cristian
    Cavigelli, Lukas
    Rusci, Manuele
    de Prado, Miguel
    Benini, Luca
    2024 IEEE 6TH INTERNATIONAL CONFERENCE ON AI CIRCUITS AND SYSTEMS, AICAS 2024, 2024, : 6 - 10
  • [8] Ultra-low Energy Systems: Analog to Information
    Bahai, Ahmad
    2016 46TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE (ESSDERC), 2016, : 3 - 6
  • [9] Ultra-low Energy Systems: Analog to Information
    Bahai, Ahmad
    ESSCIRC CONFERENCE 2016, 2016, : 3 - 6
  • [10] Complementary Nano-Electromechanical Switches for Ultra-Low Power Embedded Processors
    Alzoubi, Khawla
    Saab, Daniel G.
    Tabib-Azar, Massood
    GLSVLSI 2009: PROCEEDINGS OF THE 2009 GREAT LAKES SYMPOSIUM ON VLSI, 2009, : 309 - 314