Naphthalenediimide-Based Metal Organic Framework Materials for Photoassisted Lithium-Ion Batteries

被引:0
|
作者
Lv, Jiangquan [1 ]
Shi, Qingmei [2 ]
Sun, Cai [3 ]
Guan, Xiangfeng [1 ]
Yu, Muxin [1 ]
Li, Xiaoyan [1 ]
Yu, Yulong [1 ]
机构
[1] Fujian Jiangxia Univ, Fujians Univ, Organ Optoelect Engn Res Ctr, Fuzhou 350108, Fujian, Peoples R China
[2] Chinese Acad Sci, Fujian Inst Res Struct Matter, Fujian Key Lab Nanomat, Fuzhou 350002, Peoples R China
[3] Fuzhou Univ, Coll Chem, Fujian Prov Key Lab Adv Inorgan Oxygenated Mat, Fuzhou 350108, Fujian, Peoples R China
来源
ACS APPLIED ENERGY MATERIALS | 2024年 / 7卷 / 15期
基金
中国国家自然科学基金;
关键词
metal organic framework materials; metal-ligandcharge transfer; light-matter interaction; solar energy storage; lithium-ion batteries;
D O I
10.1021/acsaem.4c01046
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photoassisted lithium-ion batteries provide an effective solution to improve the capacity and round-trip efficiency of batteries by utilizing solar energy. However, there is still a big challenge to develop key photoelectrochemical energy storage materials for simultaneous light harvesting and energy storage. Here, we presented a redox-active metal-organic framework (MOF) material with Ni2+ and naphthalenediimide salicylic acid ligand (NDISA) as photoactive electrodes. The designed Ni-NDISA material exhibited reversible electrochemical redox activity on the naphthalenediimide unit and showed efficient photoinduced metal-ligand charge transfer to realize solar-to-electrochemical energy conversion and storage. With the Ni-NDISA as a bifunctional cathode, a photoassisted lithium-ion battery delivered an extra 13.1% of round-trip efficiency and improved specific capacity (82.0 mA h g(-1) under dark to 200.0 mA h g(-1) under 1 sun illumination). This work presents an optional way to design photoelectrochemical energy storage materials and opens up opportunities for solar to electrochemical energy storage devices.
引用
收藏
页码:6342 / 6348
页数:7
相关论文
共 50 条
  • [1] Metal-Organic Framework as Anode Materials for Lithium-Ion Batteries with High Capacity and Rate Performance
    Yin, Chengjie
    Xu, Linfeng
    Pan, Yusong
    Pan, Chengling
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (11): : 10776 - 10786
  • [2] Application of metal-organic frameworks as cathode materials for lithium-ion batteries
    Zhou, Jian'en
    Chen, Yueying
    Pan, Yingying
    Lin, Xiaoming
    Yuan, Zhongzhi
    CHINESE SCIENCE BULLETIN-CHINESE, 2020, 65 (25): : 2740 - 2751
  • [3] Organic Sulfide Electrode Materials for Lithium-Ion Batteries
    Sun Wanning
    Ying Jierong
    Huang Zhenlei
    Jiang Changyin
    Wan Chunrong
    PROGRESS IN CHEMISTRY, 2009, 21 (09) : 1963 - 1968
  • [4] Nanoscale zinc-based metal-organic framework with high capacity for lithium-ion batteries
    Shi, Changdong
    Gao, Yuanrui
    Liu, Lili
    Song, Yidan
    Wang, Xianmei
    Liu, Hong-Jiang
    Liu, Qi
    JOURNAL OF NANOPARTICLE RESEARCH, 2016, 18 (12)
  • [5] Nanoscale zinc-based metal-organic framework with high capacity for lithium-ion batteries
    Changdong Shi
    Yuanrui Gao
    Lili Liu
    Yidan Song
    Xianmei Wang
    Hong-Jiang Liu
    Qi Liu
    Journal of Nanoparticle Research, 2016, 18
  • [6] Crystal Engineering of Naphthalenediimide-Based Metal-Organic Frameworks: Structure-Dependent Lithium Storage
    Tian, Bingbing
    Ning, Guo-Hong
    Gao, Qiang
    Tan, Li-Min
    Tang, Wei
    Chen, Zhongxin
    Su, Chenliang
    Loh, Kian Ping
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (45) : 31067 - 31075
  • [7] Metal-organic frameworks (MOFs) and their derivative as electrode materials for lithium-ion batteries
    Shen, Minghai
    Ma, Hailing
    COORDINATION CHEMISTRY REVIEWS, 2022, 470
  • [8] Metal-organic frameworks (MOFs) and their derivative as electrode materials for lithium-ion batteries
    Shen, Minghai
    Ma, Hailing
    COORDINATION CHEMISTRY REVIEWS, 2022, 470
  • [9] The application of metal-organic frameworks in electrode materials for lithium-ion and lithium-sulfur batteries
    Zhu, Ji Ping
    Wang, Xiu Hao
    Zuo, Xiu Xiu
    ROYAL SOCIETY OPEN SCIENCE, 2019, 6 (07):
  • [10] Hierarchical Cobalt-Based Metal-Organic Framework for High-Performance Lithium-Ion Batteries
    Chen, Lin
    Yang, Wenjuan
    Wang, Jianbiao
    Chen, Congrong
    Wei, Mingdeng
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (50) : 13362 - 13367